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Prediction!
Prediction is one of the most compelling applications of probability, particularly in computer science.

As an example, suppose you know the height of all students at UC Berkeley, and a Berkeley student is
chosen uniformly at random. What would be the best prediction for that student’s height that minimizes the
error of your prediction? It would make sense to guess the average height, as it lies in the "middle" of all
the heights.

More formally, prediction is the problem of making an estimate for a random variable from available infor-
mation; for this note, that information is a probability distribution or joint distribution. The goal of prediction
is to minimize the error (sometimes called loss) in the prediction.

More formally, we consider the mean squared error. That is, for a random variable X with a known distri-
bution, we define prediction as giving an estimate x̂1 which minimizes the following expression:

E[(X − x̂)2].

The solution to this prediction problem is x̂ = E[X ]!

1 The parabola
Mathematically, we revisit those childhood days of understanding the parabola. Recall that for a parabola
defined by f (x) = ax2 + bx+ c, the vertex of the parabola is at x = − b

2a . Long ago, you derived this by
“completing the square”.

Exercise: Try completing the square at home! Its really a lovely idea.

One can also use calculus and set the derivative, f ′(x) = 2ax+ b, to zero, and solve for x to find a critical
point. It is a minimum when a is positive (opens upward graphically) and a maximum when a is negative.

2 Expected value is optimal!
Recall, we wish to find the value for x̂ which minimizes E[(X − x̂)2]. Expanding gives

E[(X − x̂)2] = E[X2]−2E[X ]E[x̂]+E[x̂]2

= E[X2]−2E[X ]x̂+ x̂2

The second line follows from the fact that x̂ is a constant with respect to the expectation over X . We see that
this is a parabola of the form ax̂2 + bx̂+ c where a = 1,b = −2E[X ] and c = E[X2]. (Since X is a known
distribution, b and c are constant.) Thus, the minimum is at x̂ =−−2E[X ]

2 = E[X ]. Middle school is cool. 2

1Throughout the note, we will use the notation x̂ for predictions, to distinguish predictions from random variables and their
outcomes.

2The joke is that one learns about the parabola in middle school. Unfortunately, middle school is anything but fun. Also,
unfortunately, having to explain a joke perhaps means it is a poor one.
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An important observation is that the minimum value of the mean squared error of this estimator is exactly
the variance of X , i.e., E[(X −E[X ])2].

An important conceptual frame in estimation, what is the value of the best estimate and what is the error.
In this setting, the estimator for X with the lowest mean squared error is E[X ], and this estimate results in a
mean squared error of Var(X). Do take note of this!

3 Joint distributions: conditional expectation
Often, we predict given more information just than our prior expectations or (in our words) distributions to
predict a value. We do this constantly in our behavior, e.g., when will a traffic light turn red after we see it
turn yellow?

A simpler example is to predict the weight of someone from their height. That is, our predictor for someone’s
weight is based on their height h, so we will write the predictor as a function ŵ(h) of h rather than as a
constant. Here we have two pieces of information to base our prediction on. The first is the joint distribution
of the weights, W , and heights, H. That is, we have P[W = w,H = h] for any weight w and height h. The
second is the individual’s height itself, h.

Exercise: What estimate should you use for W to minimize mean squared error if you do not know the
height?

For the known value of h, we wish to find ŵ(h) that minimizes the mean squared error which is:

E[(W − ŵ(h))2|H = h].

Recall, that conditioning on H = h yields a distribution on W which we denote as P[W = w|H = h], which
in turn has a conditional expectation, denoted by E[W |H = h]. This is just the expectation of W in the
sample space corresponding to the event H = h, and thus by the previous section is the best estimate for
W with regards to minimizing the mean squared error. That is, the best predictor for each height h is
ŵ(h) = E[W |H = h].

We can also see that the mean squared error E[(W − ŵ(H))2] is minimized with respect to the entire sample
space for this predictor. In particular, recall that by law of total expectation,

E[(W − ŵ(H))2] = ∑
h
P[H = h]×E[(W − ŵ(h))2|H = h].

Since we can make a different prediction for each height we observe, to minimize this sum, it is enough to
minimize each E[(W − ŵ(h))2|H = h] on its own.

So the prediction ŵ(h) = E[W |H = h] also minimizes the expected squared error over the entire joint distri-
bution. This is subtle, but should be more clear after we discuss linear regression.

3.1 Application and warning
An example of doing this, informally, might be grouping people into buckets according to height, and
predicting the weight of a random person in a bucket as the “average” or expectation of the people in the
bucket.

The process is a way of approximating the joint distribution of height and weight. Statisticians are careful
when doing so to distinguish the sample mean (or the expectation conditioned on being part of the sample)
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from the real underlying mean (or unconditioned expectation over the entire population) for example by de-
noting the mean by µ̃ and the real and unknown mean by µ and being careful about some other terminology.
To do this properly is both subtle and interesting but for another time.

In this case, we presume one knows the distribution. This is fine when we are working with a distribution
like geometric or binomial, but with the height and weight example, one may never can truly know the joint
distribution. On the other hand, this frame is a solid starting point and is mathematically rigorous given
perfect knowledge of the joint distribution, and as the number of samples gets large this knowledge also
approaches full information.

4 Linear Regression

4.1 Discussion
We introduced covariance and the correlation coefficient the latter of which is perhaps the most often re-
ported quantity regarding relationships between two quantities. Even in CS70, we often compute this coef-
ficient for midterm scores and final exam scores to “measure” the consistency of our exams. To be sure, this
is the primary measure used in science and the first cut in numerous prediction or estimation problems.

For example, you may have heard it said that someone’s GPA in their freshman year explains for 80% of
the variance in their GPA in their senior year (or something to that effect). This is a mathematical statement
about the two random variables freshman year GPA and senior year GPA. The statement is based on a
prediction or estimation method called linear regression which we will now discuss.

4.2 The mathematics
We consider two random variables, X and Y on some sample space. Recall that for a given value x for X ,
the best prediction for Y for minimizing mean squared error is simply ŷ(x) = E[Y |X = x]. Note that this
prediction could be any function of x defined by the joint distribution.

Instead, we predict the weight using a linear function of x. That is, what is the function ŷ(x) = αx+ β

that minimizes the mean squared error which is defined as E[(Y − ŷ(X))2]? In particular, we wish to derive
values for α and β to produce the best linear estimator for Y given a value x for the random variable X .

For simplicity, we will shift the variables to have mean zero. That is, we consider instead the random vari-
ables X̃ = X −E[X ] and Ỹ = Y −E[Y ]. Note that for a value x for the random variable X , the corresponding
value for the random variable X̃ is x̃ = x−E[X ].

Furthermore, recall that Var(X̃) = Var(X), Var(Ỹ ) = Var(Y ), and Cov(X̃ ,Ỹ ) = Cov(X ,Y ) (the variances and
covariances aren’t affected by shifting the distributions). This follows from the definition of Cov(X ,Y ) =
E[(X −E[X ])(Y −E[Y ])].

To estimate Ỹ for some value x, we will consider a simpler prediction ŷ(x̃) = α x̃ (that is, we assume for
now that b = 0). We wish to find the value α that minimizes the mean squared error over the entire joint
distribution over X and Y , which corresponds to minimizing E[(Ỹ −αX̃)2].

We can expand this expression as follows:

E[(Ỹ −αX̃)2] = E[Ỹ 2]−2E[X̃Ỹ ]α +E[X̃2]α2. (1)

We get a quadratic function here in α of the form c+ bα + aα2, where a = E[X̃2], b = −2E[X̃Ỹ ], and

c = E[Ỹ 2], which is minimized at α =− b
2a = E[X̃Ỹ ]

E[X̃2]
= Cov(X̃ ,Ỹ )

Var(X̃)
.

EECS 70, Fall 2021, Note 20 3



We derived this, again, using just our knowledge of a parabola. Again, we assumed that β = 0 or “goes
through” the point (0,0) for X̃ and Ỹ . We justify this by minimizing E[(Ỹ − (αX̃ +β ))2] with respect to the
choice of β . Here, we expand to obtain

E[Ỹ ]2 −2(α E[X̃Ỹ ]+β E[Ỹ ])+(α2E[X̃ ]2 +2αβ E[X̃ ]+β
2).

Collecting terms, taking the derivative with respect to β , and setting the derivative to zero gives the equation:

2E[Ỹ ]+2α E[X̃ ]+2β = 0.

Here, we see that β = 0 satisfies the equation, since E[Ỹ ] = E[X̃ ] = 0, which implies that this is where the

minimum is. So, for the random variables, X̃ ,Ỹ the best linear predictor of Ỹ is ŷ(x̃) = Cov(X̃ ,Ỹ )
Var(X̃)

x̃.

Finally, to get our prediction ŷ(x) of Y , we use the fact that Cov(X̃ ,Ỹ ) = Cov(X ,Y ),Var(X̃) = Var(X),
Var(Ỹ ) = Var(Y ). Substituting yields:

ŷ(x) =
Cov(X ,Y )

Var(X)
(x−E[X ])+E[Y ].

The intuition above is that if X differs from its expectation, then we vary Y from its expectation by an amount
proportional to Cov(X ,Y ). The division by Var(X) scales the movement in X as well as the dependence of
the covariance of X on the typical movement in X .

We can also write the formula as follows to see it as a linear function in the variable X .

ŷ(x) =
Cov(X ,Y )

Var(X)
x− Cov(X ,Y )

Var(X)
E[X ]+E[Y ].

Exercise: Knowing that ŷ(x̃) goes through (0,0) for zero mean random variables X and Y , what point does
ŷ(x) always go through for general random variables?

4.3 Linear estimation as an explanation of variance
Armed with our derivation, we formally define the phrase that X explains some fraction of the variance of
Y by how much smaller the mean squared error for the regression is than the variance of Y (which recall is
the mean squared error one gets by using the estimate E[Y ]).

Indeed, recall the mean squared error from equation 1 is

E[Ỹ 2]−2α E[X̃Ỹ ]+α
2E[X̃2],

and plugging in α = Cov(X̃ ,Ỹ )
Var(X̃)

, we obtain the expression:

E[Ỹ 2]− Cov(X̃ ,Ỹ )2

Var(X̃)
.

Dividing by Var(Ỹ ) = E[Ỹ 2], and recalling that Corr(X ,Y ) = Cov(X ,Y )√
Var(X)Var(Y )

, we obtain the expression:

1−Corr(X̃ ,Ỹ )2.

EECS 70, Fall 2021, Note 20 4



We see that the correlation coefficient squared is exactly the fraction by which the mean squared error in the
linear regression estimator is less than the error in estimating Y by using the estimate E[Y ]. Thus, the square
of the correlation coefficient tells us how much of the variance in Y is explained by a linear estimator given
X .

5 Statistics
In statistics, one often has some number of samples from a distribution or joint distribution, and one wishes
to find the line that “best” fits the data, where the error is defined as the average squared distance to the line.
One basic approach is to assume a uniform distribution over the points themselves, and in the limit of large
n, the above approach works to find the line.

To be sure, a statistician would find this statement objectionable, as the points only approximate some
unknown distribution. They deal with this by thinking through the consequences of the sample mean,
variances, and covariances being different from the true ones. Indeed, we have heard exasperation from
our statistics colleagues when one confuses the true expectation (typically denoted by µ) with the sample
expectation (typically denoted by µ̃ .)

This is beyond this class, but for large data the discussion above is what is happening.

6 Context.
6.1 Other types of error
The mean square error developed here is quite common in science and applications of statistics. You might
even read the phrase X “explains variability” in Y in your local newspaper.

There are other measures of error. For example, another error measure is measured as absolute value, that is,
we minimize E[|X − x̂|]. In this case, we get that x̂ should be a median of the distribution.3 This particular
measure is more "robust" as a far away point has less influence on the value of the median compared to its
influence on the value of the expectation.

Other notions of error can be more effective for various applications even while being more challenging
to compute. One might see them in future EECS, Data Science, Statistics, or many other departments’
curriculums.

6.2 Prediction from more variables
Often one predicts from many variables; e.g., predicting whether an image is a cat or dog from various
features in the image. The above discussion can be generalized to estimating a variable Y from many
random variables, X1, . . . ,Xn. With a bit of linear algebra, the framework above can be adjusted to this
situation. Again, this is an oft-used technique that may be discussed in courses that are in your future.

6.3 Correlation and Causation.
One should be careful. Two random variables may well be correlated (have a positive value for correlation)
but one does not "cause" the other; the classic example is that drowning and ice cream consumption are
correlated but neither causes the other, the "causal" variable is perhaps summer. In general, causation is a

3The median of a distribution is a value x where the probability mass above and below x are the same.
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difficult thing to establish. Traditionally, a "gold standard" for establishing causation is considered to be a
randomized controlled trial where one randomly assigns treatment or not to understand effect. Indeed, even
this process is far from absolute in that various biases can create spurious relationships and often do.

On the other hand, if causation is indeed present one does expect a correlation. Still, even here this is not
absolute. For example, the relationship between variables may be non-linear. In health, for example, one
sees the "U" shaped curve for various things like weight; being too light or too heavy can be bad for health.

A different aspect of this issue is illustrated by the xor function on two variables. In this case, the output
is not correlated to either input, but the two inputs determine the output completely. To be sure, this last
example and its extensions is central in theoretical computer science in topics ranging from coding theory
to complexity as well as providing statistical lower bounds.
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