CS 70 Discrete Mathematics and Probability Theory DIS 14B

1 LLSE

We have two bags of balls. The fractions of red balls and blue balls in bag *A* are 2/3 and 1/3 respectively. The fractions of red balls and blue balls in bag *B* are 1/2 and 1/2 respectively. Someone gives you one of the bags (unmarked) uniformly at random. You then draw 6 balls from that same bag with replacement. Let X_i be the indicator random variable that ball *i* is red. Now, let us define $X = \sum_{1 \le i \le 3} X_i$ and $Y = \sum_{4 \le i \le 6} X_i$.

- (a) Compute $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.
- (b) Compute Var(X).
- (c) Compute cov(X, Y). (*Hint*: Recall that covariance is bilinear.)
- (d) Compute $L(Y \mid X)$, the best linear estimator of Y given X. (*Hint*: Recall that

$$L(Y \mid X) = \mathbb{E}[Y] + \frac{\operatorname{cov}(X, Y)}{\operatorname{Var}(X)} (X - \mathbb{E}[X]).$$

)

2 Balls in Bins Estimation

We throw n > 0 balls into $m \ge 2$ bins. Let X and Y represent the number of balls that land in bin 1 and 2 respectively.

- (a) Calculate $\mathbb{E}[Y \mid X]$. [*Hint*: Your intuition may be more useful than formal calculations.]
- (b) What is L[Y | X] (where L[Y | X] is the best linear estimator of Y given X)? [*Hint*: Your justification should be no more than two or three sentences, no calculations necessary! Think carefully about the meaning of the conditional expectation.]
- (c) Unfortunately, your friend is not convinced by your answer to the previous part. Compute $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.
- (d) Compute Var(X).
- (e) Compute cov(X, Y).
- (f) Compute L[Y | X] using the formula. Ensure that your answer is the same as your answer to part (b).

3 Continuous LLSE

Suppose that X and Y are uniformly distributed on the shaded region in the figure below.

Figure 1: The joint density of (X, Y) is uniform over the shaded region.

That is, *X* and *Y* have the joint distribution:

$$f_{X,Y}(x,y) = \begin{cases} 1/2, & 0 \le x \le 1, 0 \le y \le 1\\ 1/2, & 1 \le x \le 2, 1 \le y \le 2 \end{cases}$$

- (a) Do you expect *X* and *Y* to be positively correlated, negatively correlated, or neither?
- (b) Compute the marginal distribution of *X*.
- (c) Compute L[Y | X], the best linear estimator of Y given X.
- (d) What is $\mathbb{E}[Y \mid X]$?