CS 70 Discrete Mathematics and Probability Theory DIS 6B

1 Counting Strings

- (a) How many bit strings of length 10 contain at least five consecutive 0's?
- (b) How many different ways are there to rearrange the letters of DIAGONALIZATION (15 letters with 3 A's, 3 I's, 2 N's, and 2 O's) without the two N's being adjacent?

2 Teams and Leaders

Prove the following identities using a combinatorial proof.

1.
$$\sum_{k=0}^{n} {\binom{n}{k}}^2 = {\binom{2n}{n}}$$

2.
$$\sum_{k=1}^{n} k {\binom{n}{k}}^2 = n {\binom{2n-1}{n-1}}$$

3 CS70: The Musical

Edward, one of the previous head TA's, has been hard at work on his latest project, *CS70: The Musical*. It's now time for him to select a cast, crew, and directing team to help him make his dream a reality.

(a) First, Edward would like to select directors for his musical. He has received applications from 2n directors. Use this to provide a combinatorial argument that proves the following identity: $\binom{2n}{2} = 2\binom{n}{2} + n^2$

(b) Edward would now like to select a crew out of *n* people, Use this to provide a combinatorial argument that proves the following identity: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (this is called Pascal's Identity)

(c) There are *n* actors lined up outside of Edward's office, and they would like a role in the musical (including a lead role). However, he is unsure of how many individuals he would like to cast. Use this to provide a combinatorial argument that proves the following identity: $\sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1}$

(d) Generalizing the previous part, provide a combinatorial argument that proves the following identity: $\sum_{k=j}^{n} {n \choose k} {k \choose j} = 2^{n-j} {n \choose j}.$

4 Countability: True or False

(a) The set of all irrational numbers $\mathbb{R}\setminus\mathbb{Q}$ (i.e. real numbers that are not rational) is uncountable.

(b) The set of integers x that solve the equation $3x \equiv 2 \pmod{10}$ is countably infinite.

(c) The set of real solutions for the equation x + y = 1 is countable.

For any two functions $f: Y \to Z$ and $g: X \to Y$, let their composition $f \circ g: X \to Z$ be given by $f \circ g = f(g(x))$ for all $x \in X$. Determine if the following statements are true or false.

- (d) f and g are injective (one-to-one) $\implies f \circ g$ is injective (one-to-one).
- (e) f is surjective (onto) $\implies f \circ g$ is surjective (onto).