CS 70 Discrete Mathematics and Probability Theory Fall 2021 DIS 1A

1 Truth Tables

Determine whether the following equivalences hold, by writing out truth tables. Clearly state whether or not each pair is equivalent.

- (a) $P \land (Q \lor P) \equiv P \land Q$
- (b) $(P \lor Q) \land R \equiv (P \land R) \lor (Q \land R)$
- (c) $(P \land Q) \lor R \equiv (P \lor R) \land (Q \lor R)$

2 Converse and Contrapositive

Consider the statement "if a natural number is divisible by 4, it is divisible by 2".

- (a) Write the statement in propositional logic. Prove that it is true or give a counterexample.
- (b) Write the inverse of the implication in English and in propositional logic. Prove that it is true or give a counterexample. (The inverse of an implication $P \implies Q$ is $\neg P \implies \neg Q$.)
- (c) Write the converse of the implication in English and in propositional logic. Prove that it is true or give a counterexample.
- (d) Write the contrapositive of the implication in English and in propositional logic. Prove that it is true or give a counterexample.

3 Preserving Set Operations

For a function f, define the image of a set X to be the set $f(X) = \{y \mid y = f(x) \text{ for some } x \in X\}$. Define the inverse image or preimage of a set Y to be the set $f^{-1}(Y) = \{x \mid f(x) \in Y\}$. Prove the following statements, in which A and B are sets.

Recall: For sets X and Y, X = Y if and only if $X \subseteq Y$ and $Y \subseteq X$. To prove that $X \subseteq Y$, it is sufficient to show that $(\forall x) ((x \in X) \implies (x \in Y))$.

- (a) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.
- (b) $f(A \cup B) = f(A) \cup f(B)$.

4 Numbers of Friends

Prove that if there are $n \ge 2$ people at a party, then at least 2 of them have the same number of friends at the party. Assume that friendships are always reciprocated: that is, if Alice is friends with Bob, then Bob is also friends with Alice.

(Hint: The Pigeonhole Principle states that if *n* items are placed in *m* containers, where n > m, at least one container must contain more than one item. You may use this without proof.)