CS70: Lecture 9. Outline.

- 1. Public Key Cryptography
- 2. RSA system
 - 2.1 Efficiency: Repeated Squaring.
 - 2.2 Correctness: Fermat's Theorem.
 - 2.3 Construction.
- 3. Warnings.

Isomorphisms.

Bijection:

 $f(x) = ax \pmod{m}$ if gcd(a, m) = 1.

Simplified Chinese Remainder Theorem:

If gcd(n,m) = 1, there is unique x (mod mn) where $x = a \pmod{m}$ and $x = b \pmod{n}$.

Bijection between $(a \pmod{n}, b \pmod{m})$ and $x \pmod{m}$.

Consider m = 5, n = 9, then if (a, b) = (3, 7) then $x = 43 \pmod{45}$.

Consider (a', b') = (2, 4), then $x = 22 \pmod{45}$.

Now consider: (a, b) + (a', b') = (0, 2).

What is x where $x = 0 \pmod{5}$ and $x = 2 \pmod{9}$?

Try $43 + 22 = 65 = 20 \pmod{45}$.

Is it 0 (mod 5)? Yes! Is it 2 (mod 9)? Yes!

Isomorphism:

```
the actions under (mod 5), (mod 9)
correspond to actions in (mod 45)!
```

Poll

```
x = 5 \mod{7} and x = 5 \mod{6}
y = 4 \mod{7} and y = 3 \mod{6}
```

What's true?

(A) $x + y = 2 \mod 7$ (B) $x + y = 2 \mod 6$ (C) $xy = 3 \mod 6$ (D) $xy = 6 \mod 7$ (E) $x = 5 \mod 42$ (F) $y = 39 \mod 42$

All true.

Xor

Computer Science:

- 1 True
- 0 False
- $1 \lor 1 = 1$
- $1 \lor 0 = 1$
- $\mathbf{0} \lor \mathbf{1} = \mathbf{1}$
- $0 \lor 0 = 0$
- $A \oplus B$ Exclusive or. $1 \oplus 1 = 0$
- $1 \oplus 0 = 1$
- $\mathbf{0}\oplus\mathbf{1}=\mathbf{1}$
- $\mathbf{0}\oplus\mathbf{0}=\mathbf{0}$

Note: Also modular addition modulo 2! $\{0,1\}$ is set. Take remainder for 2. Property: $A \oplus B \oplus B = A$.

By cases: $1 \oplus 1 \oplus 1 = 1$

Cryptography ...

Example:

One-time Pad: secret *s* is string of length |m|.

m = 10101011110101101

s =

E(m, s) – bitwise $m \oplus s$.

D(x,s) – bitwise $x \oplus s$.

Works because $m \oplus s \oplus s = m!$

...and totally secure!

...given E(m, s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Public key crypography.

m = D(E(m, K), k)Private: k
Public: K
Message m E(m, K)Bob
Eve

Everyone knows key K! Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key k for public key K. (Only?) Alice can decode with k.

Is this even possible?

Is public key crypto possible?

No. In a sense. One can try every message to "break" system. Too slow. Does it have to be slow? We don't really know. ...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman) Pick two large primes p and q. Let N = pq. Choose e relatively prime to (p-1)(q-1).¹ Compute $d = e^{-1} \mod (p-1)(q-1)$. Announce $N(=p \cdot q)$ and e: K = (N, e) is my public key! Encoding: $\mod (x^e, N)$. Decoding: $\mod (y^d, N)$. Does $D(E(m)) = m^{ed} = m \mod N$? Yes!

¹Typically small, say e = 3.

Poll

What is a piece of RSA?

Bob has a key (N,e,d). Alice is good, Eve is evil.

(A) Eve knows *e* and *N*. (B) Alice knows *e* and *N*. (C) $ed = 1 \pmod{N-1}$ (D) Bob forgot *p* and *q* but can still decode? (E) Bob knows *d* (F) $ed = 1 \pmod{(p-1)(q-1)}$ if N = pq.

(A), (B), (D), (E), (F)

Iterative Extended GCD.

```
Example: p = 7, q = 11.

N = 77.

(p-1)(q-1) = 60

Choose e = 7, since gcd(7,60) = 1.

gcd(7,60).
```

$$7(0)+60(1) = 60$$

$$7(1)+60(0) = 7$$

$$7(-8)+60(1) = 4$$

$$7(9)+60(-1) = 3$$

$$7(-17)+60(2) = 1$$

Confirm: -119 + 120 = 1 $d = e^{-1} = -17 = 43 = \pmod{60}$

Encryption/Decryption Techniques.

```
Public Key: (77,7)
Message Choices: \{0, \dots, 76\}.
Message: 2!
E(2) = 2^e = 2^7 \equiv 128 = 51 \pmod{77}
D(51) = 51^{43} \pmod{77}
uh oh!
```

Obvious way: 43 multiplications. Ouch.

In general, O(N) or $O(2^n)$ multiplications!

Repeated squaring.

Notice: 43 = 32 + 8 + 2 + 1 or 101011 in binary. $51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$. 4 multiplications sort of... Need to compute $51^{32} \dots 51^1$.? $51^1 \equiv 51 \pmod{77}$ $51^2 = (51) * (51) = 2601 \equiv 60 \pmod{77}$ $51^4 = (51^2) * (51^2) = 60 * 60 = 3600 \equiv 58 \pmod{77}$ $51^8 = (51^4) * (51^4) = 58 * 58 = 3364 \equiv 53 \pmod{77}$ $51^{16} = (51^8) * (51^8) = 53 * 53 = 2809 \equiv 37 \pmod{77}$ $51^{32} = (51^{16}) * (51^{16}) = 37 * 37 = 1369 \equiv 60 \pmod{77}$

5 more multiplications.

$$51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 = (60) * (53) * (60) * (51) \equiv 2 \pmod{77}$$

Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.

Recursive version.

```
(define (power x y m)
  (if (= y 1)
    (mod x m)
    (let ((x-to-evened-y (power (square x) (/ y 2) m)))
    (if (evenp y)
        x-to-evened-y
        (mod (* x x-to-evened-y) m )))))
```

Claim: Program correctly computes x^y .

Base:
$$x^1 = x \pmod{m}$$
.
Note: $y = 2\lfloor y/2 \rfloor + \mod(y, 2)$.
 $x^y = x^{2(\lfloor y/2 \rfloor) + \mod(y, 2)} = (x^2)^{\lfloor y/2 \rfloor} x^{y \mod 2} \pmod{m}$.

Induction:

Recursive call on x^2 and $\lfloor y/2 \rfloor$, returns $(x^2)^{\lfloor y/2 \rfloor}$.

 \leq 2 multiplications per recursive call.

Note: $\lfloor y/2 \rfloor$ is integer division.

Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

- 1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, \ldots, x^{2^{\lfloor \log y \rfloor}}$.
- 2. Multiply together x^i where the $(\log(i))$ th bit of y (in binary) is 1. Example: 43 = 101011 in binary. $x^{43} = x^{32} * x^8 * x^2 * x^1$.

Modular Exponentiation: $x^y \mod N$. All *n*-bit numbers. Repeated Squaring:

O(n) multiplications.

 $O(n^2)$ time per multiplication.

 $\implies O(n^3)$ time.

Conclusion: $x^{\gamma} \mod N$ takes $O(n^3)$ time.

Modular Exponentiation: $x^{y} \mod N$. All *n*-bit numbers. $O(n^{3})$ time.

Remember RSA encoding/decoding!

$$\begin{split} E(m,(N,e)) &= m^e \pmod{N}, \\ D(m,(N,d)) &= m^d \pmod{N}. \end{split}$$

For 512 bits, a few hundred million operations. Easy, peasey.

Decoding.

$$E(m, (N, e)) = m^{e} \pmod{N}.$$

$$D(m, (N, d)) = m^{d} \pmod{N}.$$

$$N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}.$$

Want: $(m^{e})^{d} = m^{ed} = m \pmod{N}.$

Always decode correctly?

 $E(m, (N, e)) = m^{e} \pmod{N}.$ $D(m, (N, d)) = m^{d} \pmod{N}.$ $N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}.$ Want: $(m^{e})^{d} = m^{ed} = m \pmod{N}.$

Another view:

$$d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1$$

Consider...

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

$$\implies a^{k(p-1)} \equiv 1 \pmod{p} \implies a^{k(p-1)+1} = a \pmod{p}$$
versus $a^{k(p-1)(q-1)+1} = a \pmod{pq}$.

Similar, not same, but useful.

Correct decoding...

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

 $a^{p-1} \equiv 1 \pmod{p}$.

Proof: Consider $S = \{a \cdot 1, \dots, a \cdot (p-1)\}$.

All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \dots, p-1\}$ modulo p.

$$(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \mod p$$
,

Since multiplication is commutative.

$$a^{(p-1)}(1\cdots(p-1)) \equiv (1\cdots(p-1)) \mod p.$$

Each of 2,... (p-1) has an inverse modulo p, solve to get...

$$a^{(p-1)} \equiv 1 \mod p$$
.

Poll Mark what is true.

(A)
$$2^7 = 1 \mod 7$$

(B) $2^6 = 1 \mod 7$
(C) $2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7$ are distinct mod 7.
(D) $2^1, 2^2, 2^3, 2^4, 2^5, 2^6$ are distinct mod 7
(E) $2^{15} = 2 \mod 7$
(F) $2^{15} = 1 \mod 7$
(B), (F)

Always decode correctly? (cont.)

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

 $a^{p-1} \equiv 1 \pmod{p}$.

Lemma 1: For any prime *p* and any *a*, *b*, $a^{1+b(p-1)} \equiv a \pmod{p}$ **Proof:** If $a \equiv 0 \pmod{p}$, of course.

Otherwise $a^{1+b(p-1)} \equiv a^1 * (a^{p-1})^b \equiv a * (1)^b \equiv a \pmod{p}$

...Decoding correctness...

Lemma 1: For any prime *p* and any *a*, *b*, $a^{1+b(p-1)} \equiv a \pmod{p}$

Lemma 2: For any two different primes p, q and any x, k, $x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$

Let a = x, b = k(p-1) and apply Lemma 1 with modulus q. $x^{1+k(p-1)(q-1)} \equiv x \pmod{q}$

Let a = x, b = k(q-1) and apply Lemma 1 with modulus p.

 $x^{1+k(p-1)(q-1)} \equiv x \pmod{p} \quad x^{1+k(q-1)(p-1)} - x \text{ is multiple of } p \text{ and } q.$ $x^{1+k(q-1)(p-1)} - x \equiv 0 \mod{(pq)} \implies x^{1+k(q-1)(p-1)} = x \mod{pq}.$

From CRT: $y = x \pmod{p}$ and $y = x \pmod{q} \implies y = x$.

RSA decodes correctly..

Lemma 2: For any two different primes p, q and any x, k, $x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$

Theorem: RSA correctly decodes! Recall

$$D(E(x)) = (x^e)^d = x^{ed} \equiv x \pmod{pq},$$

where $ed \equiv 1 \mod (p-1)(q-1) \Longrightarrow ed = 1 + k(p-1)(q-1)$ $x^{ed} \equiv x^{k(p-1)(q-1)+1} \equiv x \pmod{pq}.$

Construction of keys....

1. Find large (100 digit) primes *p* and *q*? **Prime Number Theorem:** $\pi(N)$ number of primes less than *N*.For all $N \ge 17$

$$\pi(N) \ge N/\ln N.$$

Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170...Miller-Rabin test.. Primes in *P*).

For 1024 bit number, 1 in 710 is prime.

- 2. Choose *e* with gcd(e, (p-1)(q-1)) = 1. Use gcd algorithm to test.
- 3. Find inverse *d* of *e* modulo (p-1)(q-1). Use extended gcd algorithm.

All steps are polynomial in $O(\log N)$, the number of bits.

Security?

- 1. Alice knows *p* and *q*.
- 2. Bob only knows, N(=pq), and *e*.

Does not know, for example, *d* or factorization of *N*.

3. I don't know how to break this scheme without factoring *N*.

No one I know or have heard of admits to knowing how to factor *N*. Breaking in general sense \implies factoring algorithm.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:

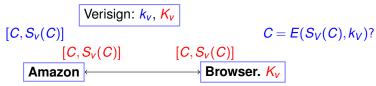
Bob encodes credit card number, *c*, concatenated with random *k*-bit number *r*.

Never sends just *c*.

Again, more work to do to get entire system.

CS161...

Signatures using RSA.



Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign's key: $K_V = (N, e)$ and $k_V = d$ (N = pq.)

Browser "knows" Verisign's public key: K_V .

Amazon Certificate: C ="I am Amazon. My public Key is K_A ." Versign signature of C: $S_V(C)$: $D(C, k_V) = C^d \mod N$.

Browser receives: [C, y]

Checks $E(y, K_V) = C$?

 $E(S_{\nu}(C), K_{\nu}) = (S_{\nu}(C))^{e} = (C^{d})^{e} = C^{de} = C \pmod{N}$ Valid signature of Amazon certificate C!

Security: Eve can't forge unless she "breaks" RSA scheme.

Public Key Cryptography: $D(E(m,K),k) = (m^e)^d \mod N = m.$ Signature scheme: $E(D(C,k),K) = (C^d)^e \mod N = C$

Poll

Signature authority has public key (N,e).

- (A) Given message/signature (x,y) : check $y^d = x \pmod{N}$
- (B) Given message/signature (x, y): check $y^e = x \pmod{N}$
- (C) Signature of message x is $x^e \pmod{N}$
- (D) Signature of message x is $x^d \pmod{N}$

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation. 2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Summary.

Public-Key Encryption.

RSA Scheme: N = pq and $d = e^{-1} \pmod{(p-1)(q-1)}$. $E(x) = x^e \pmod{N}$. $D(y) = y^d \pmod{N}$.

Repeated Squaring \implies efficiency.

Fermat's Theorem \implies correctness.

Good for Encryption and Signature Schemes.