1. Isoperimetric inequality for hypercube.

- 1. Isoperimetric inequality for hypercube.
- 2. Modular Arithmetic.

- 1. Isoperimetric inequality for hypercube.
- 2. Modular Arithmetic. Clock Math!!!

- 1. Isoperimetric inequality for hypercube.
- 2. Modular Arithmetic. Clock Math!!!
- 3. Inverses for Modular Arithmetic: Greatest Common Divisor.

- 1. Isoperimetric inequality for hypercube.
- 2. Modular Arithmetic. Clock Math!!!
- 3. Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!

- 1. Isoperimetric inequality for hypercube.
- 2. Modular Arithmetic. Clock Math!!!
- 3. Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!
- 4. Euclid's GCD Algorithm.

- 1. Isoperimetric inequality for hypercube.
- 2. Modular Arithmetic. Clock Math!!!
- 3. Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!
- 4. Euclid's GCD Algorithm. A little tricky here!

For 3-space:

For 3-space:

The sphere minimizes surface area to volume.

For 3-space:

The sphere minimizes surface area to volume. Surface Area:  $4\pi r^2$ , Volume:  $\frac{4}{3}\pi r^3$ .

For 3-space:

The sphere minimizes surface area to volume. Surface Area:  $4\pi r^2$ , Volume:  $\frac{4}{3}\pi r^3$ . Ratio:  $1/3r = \Theta(V^{-1/3})$ .

For 3-space:

The sphere minimizes surface area to volume.

Surface Area:  $4\pi r^2$ , Volume:  $\frac{4}{3}\pi r^3$ .

Ratio:  $1/3r = \Theta(V^{-1/3})$ .

Graphical Analog: Cut into two pieces and find ratio of edges/vertices on small side.

For 3-space:

The sphere minimizes surface area to volume.

Surface Area:  $4\pi r^2$ , Volume:  $\frac{4}{3}\pi r^3$ .

Ratio:  $1/3r = \Theta(V^{-1/3})$ .

Graphical Analog: Cut into two pieces and find ratio of edges/vertices on small side.

Tree:  $\Theta(1/|V|)$ .

For 3-space:

The sphere minimizes surface area to volume.

Surface Area:  $4\pi r^2$ , Volume:  $\frac{4}{3}\pi r^3$ .

Ratio:  $1/3r = \Theta(V^{-1/3})$ .

Graphical Analog: Cut into two pieces and find ratio of edges/vertices on small side.

Tree:  $\Theta(1/|V|)$ .

Hypercube:  $\Theta(1)$ .

For 3-space:

The sphere minimizes surface area to volume.

Surface Area:  $4\pi r^2$ , Volume:  $\frac{4}{3}\pi r^3$ .

Ratio:  $1/3r = \Theta(V^{-1/3})$ .

Graphical Analog: Cut into two pieces and find ratio of edges/vertices on small side.

Tree:  $\Theta(1/|V|)$ .

Hypercube:  $\Theta(1)$ .

Surface Area is roughly at least the volume!

A 0-dimensional hypercube is a node labelled with the empty string of bits.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An *n*-dimensional hypercube consists of a 0-subcube (1-subcube) which is a n-1-dimensional hypercube with nodes labelled 0x (1x) with the additional edges (0x, 1x).

A 0-dimensional hypercube is a node labelled with the empty string of bits.

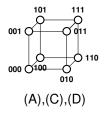
An *n*-dimensional hypercube consists of a 0-subcube (1-subcube) which is a n-1-dimensional hypercube with nodes labelled 0x (1x) with the additional edges (0x, 1x).

| 101<br>〇<br>001 〇 | 111<br>O<br>O 011 |  |
|-------------------|-------------------|--|
| O<br>000 O100     | O 110<br>O<br>010 |  |
| (A),(C),(D)       |                   |  |

(A) Lower left forward node name is 0000(B) Lower left back node name is 0001(C) Upper right forward node is 1011(D) Upper right back node name is 1111

A 0-dimensional hypercube is a node labelled with the empty string of bits.

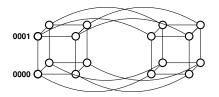
An *n*-dimensional hypercube consists of a 0-subcube (1-subcube) which is a n-1-dimensional hypercube with nodes labelled 0x(1x) with the additional edges (0x, 1x).



(A) Lower left forward node name is 0000(B) Lower left back node name is 0001(C) Upper right forward node is 1011(D) Upper right back node name is 1111

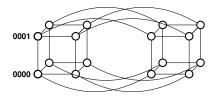
A 0-dimensional hypercube is a node labelled with the empty string of bits.

An *n*-dimensional hypercube consists of a 0-subcube (1-subcube) which is a n-1-dimensional hypercube with nodes labelled 0x(1x) with the additional edges (0x, 1x).



A 0-dimensional hypercube is a node labelled with the empty string of bits.

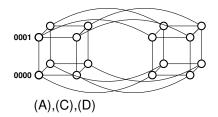
An *n*-dimensional hypercube consists of a 0-subcube (1-subcube) which is a n-1-dimensional hypercube with nodes labelled 0x (1x) with the additional edges (0x, 1x).



(A) Lower left forward node name is 0000(B) Lower left back node name is 0001(C) Upper right forward node is 1011(D) Upper right back node name is 1111

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An *n*-dimensional hypercube consists of a 0-subcube (1-subcube) which is a n-1-dimensional hypercube with nodes labelled 0x (1x) with the additional edges (0x, 1x).



(A) Lower left forward node name is 0000(B) Lower left back node name is 0001(C) Upper right forward node is 1011(D) Upper right back node name is 1111

**Thm:** Any subset *S* of the hypercube where  $|S| \le |V|/2$  has  $\ge |S|$  edges connecting it to V - S;

Thm: Any subset *S* of the hypercube where  $|S| \le |V|/2$  has  $\ge |S|$  edges connecting it to V - S;  $|E \cap S \times (V - S)| \ge |S|$ 

Thm: Any subset *S* of the hypercube where  $|S| \le |V|/2$  has  $\ge |S|$  edges connecting it to V - S;  $|E \cap S \times (V - S)| \ge |S|$ 

Terminology:

Thm: Any subset *S* of the hypercube where  $|S| \le |V|/2$  has  $\ge |S|$  edges connecting it to V - S;  $|E \cap S \times (V - S)| \ge |S|$ 

Terminology: (S, V - S) is cut.

Thm: Any subset *S* of the hypercube where  $|S| \le |V|/2$  has  $\ge |S|$  edges connecting it to V - S;  $|E \cap S \times (V - S)| \ge |S|$ 

Terminology: (S, V - S) is cut.  $(E \cap S \times (V - S))$  - cut edges.

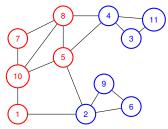
Thm: Any subset *S* of the hypercube where  $|S| \le |V|/2$  has  $\ge |S|$  edges connecting it to V - S;  $|E \cap S \times (V - S)| \ge |S|$ 

Terminology: (S, V - S) is cut.  $(E \cap S \times (V - S))$  - cut edges.

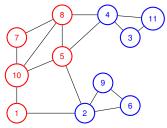
**Thm:** Any subset *S* of the hypercube where  $|S| \le |V|/2$  has  $\ge |S|$  edges connecting it to V - S;  $|E \cap S \times (V - S)| \ge |S|$ 

Terminology: (S, V - S) is cut.  $(E \cap S \times (V - S))$  - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges is at least the size of the small side.

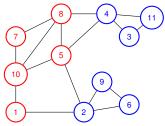


S is red, V - S is blue.



S is red, V - S is blue.

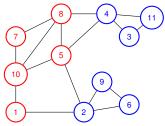
What is size of cut?



S is red, V - S is blue.

What is size of cut?

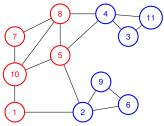
Number of edges between red and blue.



S is red, V - S is blue.

What is size of cut?

Number of edges between red and blue. 4.



S is red, V - S is blue.

What is size of cut?

Number of edges between red and blue. 4.

Hypercube: any cut that cuts off *x* nodes has  $\ge x$  edges.

# Proof of Large Cuts.

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side. **Proof:** 

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side. **Proof:** Base Case: n = 1

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side. **Proof:** Base Case: n = 1 V= {0,1}.

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side. **Proof:** 

Base Case: n = 1 V= {0,1}. S = {0} has one edge leaving.

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side. **Proof:** 

Base Case: n = 1 V= {0,1}. S = {0} has one edge leaving.  $|S| = \phi$  has 0.

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side. **Proof:** 

Base Case: n = 1 V= {0,1}. S = {0} has one edge leaving.  $|S| = \phi$  has 0.

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side. **Proof:** 

Base Case: n = 1 V= {0,1}. S = {0} has one edge leaving.  $|S| = \phi$  has 0.

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

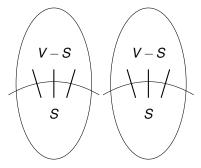
Case 1: Count edges inside subcube inductively.

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.



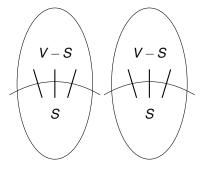
**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.

Case 2: Count inside and across.

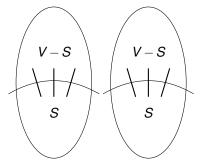


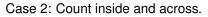
**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side.

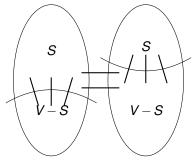
Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.







**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step.

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

#### Proof: Induction Step.

Recursive definition:

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

#### Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$ , edges  $E_x$  that connect them.

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

#### Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$ , edges  $E_x$  that connect them.  $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$ 

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

#### Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$ , edges  $E_x$  that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

 $S = S_0 \cup S_1$  where  $S_0$  in first, and  $S_1$  in other.

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

#### Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1),$  edges  $E_x$  that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

 $S = S_0 \cup S_1$  where  $S_0$  in first, and  $S_1$  in other.

Case 1:  $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$ 

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

#### Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$ , edges  $E_x$  that connect them.

$$H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$$

 $S = S_0 \cup S_1$  where  $S_0$  in first, and  $S_1$  in other.

Case 1:  $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$ Both  $S_0$  and  $S_1$  are small sides.

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

#### Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$ , edges  $E_x$  that connect them.  $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$ 

 $S = S_0 \cup S_1$  where  $S_0$  in first, and  $S_1$  in other.

Case 1:  $|S_0| \le |V_0|/2$ ,  $|S_1| \le |V_1|/2$ Both  $S_0$  and  $S_1$  are small sides. So by induction.

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

#### Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$ , edges  $E_x$  that connect them.  $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$ 

 $S = S_0 \cup S_1$  where  $S_0$  in first, and  $S_1$  in other.

Case 1:  $|S_0| \le |V_0|/2$ ,  $|S_1| \le |V_1|/2$ Both  $S_0$  and  $S_1$  are small sides. So by induction. Edges cut in  $H_0 \ge |S_0|$ .

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

#### Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$ , edges  $E_x$  that connect them.  $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$ 

 $S = S_0 \cup S_1$  where  $S_0$  in first, and  $S_1$  in other.

Case 1:  $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$ Both  $S_0$  and  $S_1$  are small sides. So by induction. Edges cut in  $H_0 \ge |S_0|$ . Edges cut in  $H_1 \ge |S_1|$ .

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

#### Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$ , edges  $E_x$  that connect them.  $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$ 

 $S = S_0 \cup S_1$  where  $S_0$  in first, and  $S_1$  in other.

Case 1:  $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$ Both  $S_0$  and  $S_1$  are small sides. So by induction. Edges cut in  $H_0 \ge |S_0|$ . Edges cut in  $H_1 \ge |S_1|$ .

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

#### Proof: Induction Step.

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$ , edges  $E_x$  that connect them.  $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$ 

 $S = S_0 \cup S_1$  where  $S_0$  in first, and  $S_1$  in other.

Case 1:  $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$ Both  $S_0$  and  $S_1$  are small sides. So by induction. Edges cut in  $H_0 \ge |S_0|$ . Edges cut in  $H_1 \ge |S_1|$ .

 $\label{eq:constraint} \text{Total cut edges} \geq |\textbf{\textit{S}}_0| + |\textbf{\textit{S}}_1| = |\textbf{\textit{S}}|.$ 

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

#### **Proof: Induction Step.**

Recursive definition:

 $H_0 = (V_0, E_0), H_1 = (V_1, E_1)$ , edges  $E_x$  that connect them.  $H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)$ 

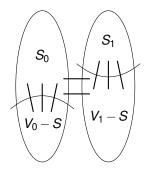
 $S = S_0 \cup S_1$  where  $S_0$  in first, and  $S_1$  in other.

Case 1:  $|S_0| \le |V_0|/2, |S_1| \le |V_1|/2$ Both  $S_0$  and  $S_1$  are small sides. So by induction. Edges cut in  $H_0 \ge |S_0|$ . Edges cut in  $H_1 \ge |S_1|$ .

 $\label{eq:constraint} \text{Total cut edges} \geq |\textbf{\textit{S}}_0| + |\textbf{\textit{S}}_1| = |\textbf{\textit{S}}|.$ 

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|. **Proof: Induction Step. Case 2.** 

$$|S_0| \ge |V_0|/2.$$

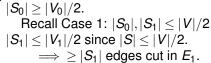


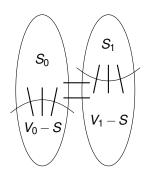
**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|. **Proof: Induction Step. Case 2.** 

 $S_0$   $V_0 - S$  $V_1 - S$   $|S_0| \ge |V_0|/2.$ Recall Case 1:  $|S_0|, |S_1| \le |V|/2$  $|S_1| \le |V_1|/2$  since  $|S| \le |V|/2.$ 

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

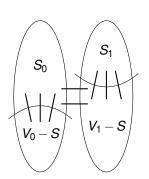
Proof: Induction Step. Case 2.





**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

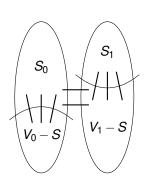
Proof: Induction Step. Case 2.



$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| &\leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| &\leq |V|/2. \\ &\implies &\geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| &\leq |V_0|/2 \end{split}$$

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

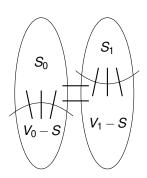
Proof: Induction Step. Case 2.



$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\implies \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ &\implies \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

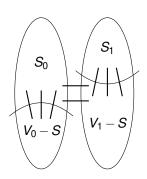


$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\implies \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ &\implies \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in  $E_x$  connect corresponding nodes.

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

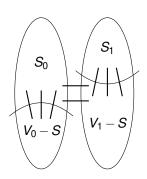


$$\begin{array}{l} \mathcal{S}_{0}| \geq |V_{0}|/2. \\ \text{Recall Case 1: } |S_{0}|, |S_{1}| \leq |V|/2 \\ \mathcal{S}_{1}| \leq |V_{1}|/2 \text{ since } |S| \leq |V|/2. \\ \implies \geq |S_{1}| \text{ edges cut in } E_{1}. \\ |S_{0}| \geq |V_{0}|/2 \implies |V_{0} - S| \leq |V_{0}|/2 \\ \implies \geq |V_{0}| - |S_{0}| \text{ edges cut in } E_{0}. \end{array}$$

Edges in  $E_x$  connect corresponding nodes.  $\implies = |S_0| - |S_1|$  edges cut in  $E_x$ .

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.

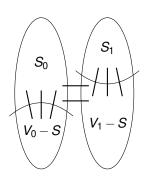


$$\begin{array}{l} \mathcal{S}_{0}| \geq |V_{0}|/2. \\ \text{Recall Case 1: } |S_{0}|, |S_{1}| \leq |V|/2 \\ \mathcal{S}_{1}| \leq |V_{1}|/2 \text{ since } |S| \leq |V|/2. \\ \implies \geq |S_{1}| \text{ edges cut in } E_{1}. \\ |S_{0}| \geq |V_{0}|/2 \implies |V_{0} - S| \leq |V_{0}|/2 \\ \implies \geq |V_{0}| - |S_{0}| \text{ edges cut in } E_{0}. \end{array}$$

Edges in  $E_x$  connect corresponding nodes.  $\implies = |S_0| - |S_1|$  edges cut in  $E_x$ .

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



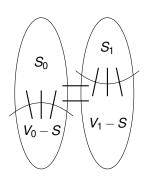
$$\begin{array}{l} \mathcal{S}_{0}|\geq |V_{0}|/2.\\ \text{Recall Case 1: } |S_{0}|, |S_{1}|\leq |V|/2\\ \mathcal{S}_{1}|\leq |V_{1}|/2 \text{ since } |S|\leq |V|/2.\\ \implies\geq |S_{1}| \text{ edges cut in } E_{1}.\\ |S_{0}|\geq |V_{0}|/2\implies |V_{0}-S|\leq |V_{0}|/2\\ \implies\geq |V_{0}|-|S_{0}| \text{ edges cut in } E_{0}. \end{array}$$

Edges in  $E_x$  connect corresponding nodes.  $\implies = |S_0| - |S_1|$  edges cut in  $E_x$ .

Total edges cut:

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$\begin{array}{l} S_{0}|\geq |V_{0}|/2.\\ \text{Recall Case 1: } |S_{0}|, |S_{1}|\leq |V|/2\\ S_{1}|\leq |V_{1}|/2 \text{ since } |S|\leq |V|/2.\\ \implies\geq |S_{1}| \text{ edges cut in } E_{1}.\\ |S_{0}|\geq |V_{0}|/2\implies |V_{0}-S|\leq |V_{0}|/2\\ \implies\geq |V_{0}|-|S_{0}| \text{ edges cut in } E_{0}. \end{array}$$

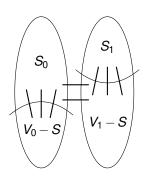
Edges in  $E_x$  connect corresponding nodes.  $\implies = |S_0| - |S_1|$  edges cut in  $E_x$ .

Total edges cut:

>

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$\begin{array}{l} S_{0}|\geq |V_{0}|/2.\\ \text{Recall Case 1: } |S_{0}|, |S_{1}|\leq |V|/2\\ S_{1}|\leq |V_{1}|/2 \text{ since } |S|\leq |V|/2.\\ \implies\geq |S_{1}| \text{ edges cut in } E_{1}.\\ |S_{0}|\geq |V_{0}|/2\implies |V_{0}-S|\leq |V_{0}|/2\\ \implies\geq |V_{0}|-|S_{0}| \text{ edges cut in } E_{0}. \end{array}$$

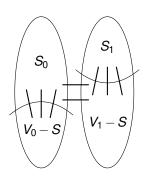
Edges in  $E_x$  connect corresponding nodes.  $\implies = |S_0| - |S_1|$  edges cut in  $E_x$ .

Total edges cut:

 $\geq |S_1|$ 

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$\begin{array}{l} S_{0}|\geq |V_{0}|/2.\\ \text{Recall Case 1: } |S_{0}|, |S_{1}|\leq |V|/2\\ S_{1}|\leq |V_{1}|/2 \text{ since } |S|\leq |V|/2.\\ \implies\geq |S_{1}| \text{ edges cut in } E_{1}.\\ |S_{0}|\geq |V_{0}|/2\implies |V_{0}-S|\leq |V_{0}|/2\\ \implies\geq |V_{0}|-|S_{0}| \text{ edges cut in } E_{0}. \end{array}$$

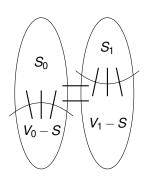
Edges in  $E_x$  connect corresponding nodes.  $\implies = |S_0| - |S_1|$  edges cut in  $E_x$ .

Total edges cut:

 $\geq |S_1| + |V_0| - |S_0|$ 

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$\begin{array}{l} S_{0}|\geq |V_{0}|/2.\\ \text{Recall Case 1: } |S_{0}|, |S_{1}|\leq |V|/2\\ S_{1}|\leq |V_{1}|/2 \text{ since } |S|\leq |V|/2.\\ \implies\geq |S_{1}| \text{ edges cut in } E_{1}.\\ |S_{0}|\geq |V_{0}|/2\implies |V_{0}-S|\leq |V_{0}|/2\\ \implies\geq |V_{0}|-|S_{0}| \text{ edges cut in } E_{0}. \end{array}$$

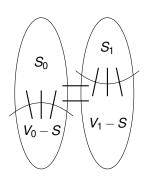
Edges in  $E_x$  connect corresponding nodes.  $\implies = |S_0| - |S_1|$  edges cut in  $E_x$ .

Total edges cut:

 $\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1|$ 

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$\begin{array}{l} S_{0}|\geq |V_{0}|/2. \\ \text{Recall Case 1: } |S_{0}|, |S_{1}|\leq |V|/2 \\ S_{1}|\leq |V_{1}|/2 \text{ since } |S|\leq |V|/2. \\ \implies\geq |S_{1}| \text{ edges cut in } E_{1}. \\ |S_{0}|\geq |V_{0}|/2 \implies |V_{0}-S|\leq |V_{0}|/2 \\ \implies\geq |V_{0}|-|S_{0}| \text{ edges cut in } E_{0}. \end{array}$$

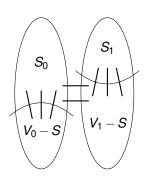
Edges in  $E_x$  connect corresponding nodes.  $\implies = |S_0| - |S_1|$  edges cut in  $E_x$ .

Total edges cut:

 $\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|$ 

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| &\leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| &\leq |V|/2. \\ &\implies &\geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| &\leq |V_0|/2 \\ &\implies &\geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

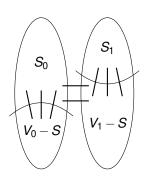
Edges in  $E_x$  connect corresponding nodes.  $\implies = |S_0| - |S_1|$  edges cut in  $E_x$ .

Total edges cut:

 $\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|$  $|V_0|$ 

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\implies \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ &\implies \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

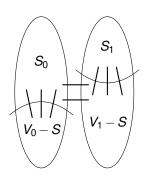
Edges in  $E_x$  connect corresponding nodes.  $\implies = |S_0| - |S_1|$  edges cut in  $E_x$ .

Total edges cut:

 $\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|$  $|V_0| = |V|/2 \geq |S|.$ 

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\implies \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ &\implies \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

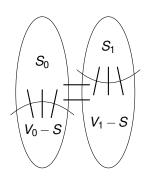
Edges in  $E_x$  connect corresponding nodes.  $\implies = |S_0| - |S_1|$  edges cut in  $E_x$ .

Total edges cut:

 $\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0| \\ |V_0| = |V|/2 \geq |S|.$ 

**Thm:** For any cut (S, V - S) in the hypercube, the number of cut edges is at least the size of the small side, |S|.

Proof: Induction Step. Case 2.



$$\begin{split} |S_0| &\geq |V_0|/2. \\ \text{Recall Case 1: } |S_0|, |S_1| \leq |V|/2 \\ |S_1| &\leq |V_1|/2 \text{ since } |S| \leq |V|/2. \\ &\implies \geq |S_1| \text{ edges cut in } E_1. \\ |S_0| &\geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2 \\ &\implies \geq |V_0| - |S_0| \text{ edges cut in } E_0. \end{split}$$

Edges in  $E_x$  connect corresponding nodes.  $\implies = |S_0| - |S_1|$  edges cut in  $E_x$ .

Total edges cut:

 $\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|$  $|V_0| = |V|/2 \geq |S|.$ 

Also, case 3 where  $|S_1| \ge |V|/2$  is symmetric.

# Hypercube proof: poll

#### Hypercube has large cuts proof uses these ideas:

- (A) If cuts are same size on two sides it works by induction.
- (B) Uses the fact that it is planar.
- (C) Recursive definition of hypercube.
- (D) If different size, can count edges between to subcubes.
- (E) Applies Euler's formula.

# Hypercube proof: poll

#### Hypercube has large cuts proof uses these ideas:

(A) If cuts are same size on two sides it works by induction.

- (B) Uses the fact that it is planar.
- (C) Recursive definition of hypercube.
- (D) If different size, can count edges between to subcubes.
- (E) Applies Euler's formula.

(A),(D), and (E).

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on  $\{0,1\}^n$ .

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on  $\{0,1\}^n$ .

Central area of study in computer science!

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on  $\{0,1\}^n$ .

Central area of study in computer science!

Yes/No Computer Programs  $\equiv$  Boolean function on  $\{0,1\}^n$ 

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on  $\{0,1\}^n$ .

Central area of study in computer science!

Yes/No Computer Programs  $\equiv$  Boolean function on  $\{0,1\}^n$ 

Central object of study.

## Modular Arithmetic.

Applications: cryptography, error correction.

Theorem: If d|x and d|y, then d|(y-x).

Theorem: If d|x and d|y, then d|(y-x). Proof:

Theorem: If d|x and d|y, then d|(y-x).

Proof:

x = ad, y = bd,

Theorem: If d|x and d|y, then d|(y-x).

Proof: x = ad, y = bd, $(x - y) = (ad - bd) = d(a - b) \implies d|(x - y).$ 

Theorem: If d|x and d|y, then d|(y-x). Proof:

$$x = ad, y = bd,$$
  
 $(x - y) = (ad - bd) = d(a - b) \implies d|(x - y).$ 

Theorem: Every number  $n \ge 2$  can be represented as a product of primes.

Theorem: If d|x and d|y, then d|(y-x).

Proof: x = ad, y = bd, $(x - y) = (ad - bd) = d(a - b) \implies d|(x - y).$ 

Theorem: Every number  $n \ge 2$  can be represented as a product of primes.

Proof: Either prime, or  $n = a \times b$ , and use strong induction. (Uniqueness? Later.)

## Poll

#### What did we use in our proofs of key ideas?

- (A) Distributive Property of multiplication over addition.
- (B) Euler's formula.
- (C) The definition of a prime number.
- (D) Euclid's Lemma.

## Poll

#### What did we use in our proofs of key ideas?

- (A) Distributive Property of multiplication over addition.
- (B) Euler's formula.
- (C) The definition of a prime number.
- (D) Euclid's Lemma.
- (A) and (C)

## Next Up.

Modular Arithmetic.

If it is 1:00 now.

If it is 1:00 now. What time is it in 2 hours?

If it is 1:00 now. What time is it in 2 hours? 3:00!

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours?

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00!

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours?

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00!

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system.

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours?

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00!

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.  $101 = 12 \times 8 + 5$ .

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5.$ 

5 is the same as 101 for a 12 hour clock system.

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5.$ 

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5.$ 

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5.$ 

5 is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in  $\{12, 1, \dots, 11\}$ 

If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00.

16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

 $101 = 12 \times 8 + 5.$ 

5 is the same as 101 for a 12 hour clock system. Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in  $\{12, 1, ..., 11\}$ (Almost remainder, except for 12 and 0 are equivalent.)

This is Thursday is September 16, 2021.

This is Thursday is September 16, 2021. What day is it a year from then?

This is Thursday is September 16, 2021. What day is it a year from then? on September 16, 2022?

This is Thursday is September 16, 2021. What day is it a year from then? on September 16, 2022? Number days.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

This is Thursday is September 16, 2021. What day is it a year from then? on September 16, 2022? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

This is Thursday is September 16, 2021. What day is it a year from then? on September 16, 2022? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then.

This is Thursday is September 16, 2021. What day is it a year from then? on September 16, 2022? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9

This is Thursday is September 16, 2021.What day is it a year from then? on September 16, 2022?Number days.0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2

This is Thursday is September 16, 2021. What day is it a year from then? on September 16, 2022? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.

This is Thursday is September 16, 2021.
What day is it a year from then? on September 16, 2022?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.

25 days from then.

This is Thursday is September 16, 2021. What day is it a year from then? on September 16, 2022? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.

25 days from then. day 29

This is Thursday is September 16, 2021. What day is it a year from then? on September 16, 2022? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1.

This is Thursday is September 16, 2021. What day is it a year from then? on September 16, 2022? Number days. 0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1

This is Thursday is September 16, 2021.
What day is it a year from then? on September 16, 2022?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 4.
5 days from then. day 9 or day 2 or Tuesday.
25 days from then. day 29 or day 1. 29 = (7)4 + 1

two days are equivalent up to addition/subtraction of multiple of 7.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.

25 days from then. day 29 or day 1. 29 = (7)4 + 1

two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then

This is Thursday is September 16, 2021. What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.

25 days from then. day 29 or day 1. 29 = (7)4 + 1

two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday.

25 days from then. day 29 or day 1. 29 = (7)4 + 1

two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday!

This is Thursday is September 16, 2021.
What day is it a year from then? on September 16, 2022?
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 4.
5 days from then. day 9 or day 2 or Tuesday.
25 days from then. day 29 or day 1. 29 = (7)4 + 1
two days are equivalent up to addition/subtraction of multiple of 7.
11 days from then is day 1 which is Monday!

What day is it a year from then?

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday!

What day is it a year from then? Next year is not a leap year.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday!

What day is it a year from then?

Next year is not a leap year. So 365 days from then.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday!

What day is it a year from then? Next year is not a leap year. So 365 days from then. Day 4+365 or day 369.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday!

What day is it a year from then? Next year is not a leap year. So 365 days from then. Day 4+365 or day 369. Smallest representation:

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday!

What day is it a year from then? Next year is not a leap year. So 365 days from then. Day 4+365 or day 369. Smallest representation:

subtract 7 until smaller than 7.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday!

What day is it a year from then? Next year is not a leap year. So 365 days from then. Day 4+365 or day 369.

Smallest representation:

subtract 7 until smaller than 7. divide and get remainder.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday!

What day is it a year from then? Next year is not a leap year. So 365 days from then.

Day 4+365 or day 369.

Smallest representation:

subtract 7 until smaller than 7. divide and get remainder.

369/7

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday!

What day is it a year from then?

Next year is not a leap year. So 365 days from then.

Day 4+365 or day 369.

Smallest representation:

subtract 7 until smaller than 7.

divide and get remainder.

369/7 leaves quotient of 52 and remainder 5.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday!

What day is it a year from then?

Next year is not a leap year. So 365 days from then.

Day 4+365 or day 369.

Smallest representation:

subtract 7 until smaller than 7.

divide and get remainder.

369/7 leaves quotient of 52 and remainder 5. 369 = 7(52) + 5

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7.

11 days from then is day 1 which is Monday!

What day is it a year from then?

Next year is not a leap year. So 365 days from then.

Day 4+365 or day 369.

Smallest representation:

subtract 7 until smaller than 7.

divide and get remainder.

369/7 leaves quotient of 52 and remainder 5. 369 = 7(52) + 5

or September 16, 2022 is a Friday.

This is Thursday is September 16, 2021.

What day is it a year from then? on September 16, 2022? Number days.

0 for Sunday, 1 for Monday, ..., 6 for Saturday.

Today: day 4.

5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. 29 = (7)4 + 1two days are equivalent up to addition/subtraction of multiple of 7.

11 days from then is day 1 which is Monday!

What day is it a year from then?

Next year is not a leap year. So 365 days from then.

Day 4+365 or day 369.

Smallest representation:

subtract 7 until smaller than 7.

divide and get remainder.

369/7 leaves quotient of 52 and remainder 5. 369 = 7(52) + 5

or September 16, 2022 is a Friday.

80 years?

80 years? 20 leap years.

80 years? 20 leap years.  $366 \times 20$  days

80 years? 20 leap years.  $366 \times 20$  days 60 regular years.

80 years? 20 leap years.  $366 \times 20$  days 60 regular years.  $365 \times 60$  days

80 years? 20 leap years.  $366 \times 20$  days 60 regular years.  $365 \times 60$  days Today is day 4.

80 years? 20 leap years.  $366 \times 20$  days 60 regular years.  $365 \times 60$  days Today is day 4. It is day  $4 + 366 \times 20 + 365 \times 60$ .

80 years? 20 leap years.  $366 \times 20$  days 60 regular years.  $365 \times 60$  days Today is day 4. It is day  $4 + 366 \times 20 + 365 \times 60$ . Equivalent to?

80 years? 20 leap years.  $366 \times 20$  days 60 regular years.  $365 \times 60$  days Today is day 4. It is day  $4 + 366 \times 20 + 365 \times 60$ . Equivalent to?

80 years? 20 leap years.  $366 \times 20$  days 60 regular years.  $365 \times 60$  days Today is day 4. It is day  $4 + 366 \times 20 + 365 \times 60$ . Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7?

80 years? 20 leap years.  $366 \times 20$  days 60 regular years.  $365 \times 60$  days Today is day 4. It is day  $4 + 366 \times 20 + 365 \times 60$ . Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7?  $52 \times 7 + 2$ .

```
Years and years...
```

Hmm.

What is remainder of 366 when dividing by 7?  $52 \times 7 + 2$ . What is remainder of 365 when dividing by 7?

```
Years and years...
```

Hmm.

What is remainder of 366 when dividing by 7?  $52 \times 7 + 2$ . What is remainder of 365 when dividing by 7? 1

```
Years and years...
```

Hmm.

What is remainder of 366 when dividing by 7?  $52 \times 7 + 2$ . What is remainder of 365 when dividing by 7? 1

```
Years and years...
```

Hmm.

What is remainder of 366 when dividing by 7?  $52 \times 7 + 2$ . What is remainder of 365 when dividing by 7? 1 Today is day 4.

```
Years and years...
```

Hmm.

What is remainder of 366 when dividing by 7?  $52 \times 7 + 2$ . What is remainder of 365 when dividing by 7? 1 Today is day 4.

Get Day:  $4 + 2 \times 20 + 1 \times 60$ 

```
Years and years...
```

Hmm.

What is remainder of 366 when dividing by 7?  $52 \times 7 + 2$ . What is remainder of 365 when dividing by 7? 1

Today is day 4.

Get Day:  $4 + 2 \times 20 + 1 \times 60 = 104$ 

```
Years and years...
```

Hmm.

What is remainder of 366 when dividing by 7?  $52 \times 7 + 2$ .

What is remainder of 365 when dividing by 7? 1

Today is day 4.

Get Day:  $4+2 \times 20+1 \times 60 = 104$ Remainder when dividing by 7?

```
Years and years...
```

```
80 years? 20 leap years. 366 \times 20 days
60 regular years. 365 \times 60 days
Today is day 4.
It is day 4 + 366 \times 20 + 365 \times 60. Equivalent to?
```

```
What is remainder of 366 when dividing by 7? 52 \times 7 + 2.
What is remainder of 365 when dividing by 7? 1
Today is day 4.
Get Day: 4 + 2 \times 20 + 1 \times 60 = 104
Remainder when dividing by 7? 104 = 14 \times 7
```

```
Years and years...
```

```
80 years? 20 leap years. 366 \times 20 days
60 regular years. 365 \times 60 days
Today is day 4.
It is day 4 + 366 \times 20 + 365 \times 60. Equivalent to?
```

```
What is remainder of 366 when dividing by 7? 52 \times 7 + 2.
What is remainder of 365 when dividing by 7? 1
Today is day 4.
Get Day: 4 + 2 \times 20 + 1 \times 60 = 104
Remainder when dividing by 7? 104 = 14 \times 7 + 6.
```

```
Years and years...
```

```
80 years? 20 leap years. 366 \times 20 days
60 regular years. 365 \times 60 days
Today is day 4.
It is day 4 + 366 \times 20 + 365 \times 60. Equivalent to?
```

```
What is remainder of 366 when dividing by 7? 52 \times 7 + 2.
What is remainder of 365 when dividing by 7? 1
Today is day 4.
Get Day: 4+2 \times 20+1 \times 60 = 104
Remainder when dividing by 7? 104 = 14 \times 7 + 6.
Or February 11, 2101 is Saturday!
```

```
Years and years...
```

```
80 years? 20 leap years. 366 \times 20 days
60 regular years. 365 \times 60 days
Today is day 4.
It is day 4 + 366 \times 20 + 365 \times 60. Equivalent to?
```

```
What is remainder of 366 when dividing by 7? 52 \times 7 + 2.
What is remainder of 365 when dividing by 7? 1
Today is day 4.
Get Day: 4 + 2 \times 20 + 1 \times 60 = 104
Remainder when dividing by 7? 104 = 14 \times 7 + 6.
Or February 11, 2101 is Saturday!
```

Further Simplify Calculation:

```
Years and years...
```

```
80 years? 20 leap years. 366 \times 20 days
60 regular years. 365 \times 60 days
Today is day 4.
It is day 4 + 366 \times 20 + 365 \times 60. Equivalent to?
```

```
What is remainder of 366 when dividing by 7? 52 \times 7 + 2.
What is remainder of 365 when dividing by 7? 1
Today is day 4.
Get Day: 4 + 2 \times 20 + 1 \times 60 = 104
Remainder when dividing by 7? 104 = 14 \times 7 + 6.
```

Or February 11, 2101 is Saturday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

```
Years and years...
```

```
80 years? 20 leap years. 366 \times 20 days
60 regular years. 365 \times 60 days
Today is day 4.
It is day 4 + 366 \times 20 + 365 \times 60. Equivalent to?
```

What is remainder of 366 when dividing by 7?  $52 \times 7 + 2$ . What is remainder of 365 when dividing by 7? 1 Today is day 4. Get Day:  $4 + 2 \times 20 + 1 \times 60 = 104$ 

Remainder when dividing by 7?  $104 = 14 \times 7 + 6$ . Or February 11, 2101 is Saturday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

```
Years and years...
```

```
80 years? 20 leap years. 366 \times 20 days
60 regular years. 365 \times 60 days
Today is day 4.
It is day 4 + 366 \times 20 + 365 \times 60. Equivalent to?
```

What is remainder of 366 when dividing by 7?  $52 \times 7 + 2$ . What is remainder of 365 when dividing by 7? 1 Today is day 4. Get Day:  $4 + 2 \times 20 + 1 \times 60 = 104$ 

Remainder when dividing by 7?  $104 = 14 \times 7 + 6$ . Or February 11, 2101 is Saturday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7. 60 has remainder 4 when divided by 7. Get Day:  $2+2\times 6+1\times 4=18$ .

```
Years and years...
```

```
80 years? 20 leap years. 366 \times 20 days
60 regular years. 365 \times 60 days
Today is day 4.
It is day 4 + 366 \times 20 + 365 \times 60. Equivalent to?
```

```
What is remainder of 366 when dividing by 7? 52 \times 7 + 2.
What is remainder of 365 when dividing by 7? 1
Today is day 4.
```

```
Get Day: 4+2 \times 20+1 \times 60 = 104
Remainder when dividing by 7? 104 = 14 \times 7+6.
Or February 11, 2101 is Saturday!
```

```
Further Simplify Calculation:
```

```
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.
Get Day: 2+2\times 6+1\times 4=18.
Or Day 6.
```

```
Years and years...
```

```
80 years? 20 leap years. 366 \times 20 days
60 regular years. 365 \times 60 days
Today is day 4.
It is day 4 + 366 \times 20 + 365 \times 60. Equivalent to?
```

```
What is remainder of 366 when dividing by 7? 52 \times 7 + 2.
What is remainder of 365 when dividing by 7? 1
```

Today is day 4.

```
Get Day: 4+2 \times 20+1 \times 60 = 104
Remainder when dividing by 7? 104 = 14 \times 7+6.
Or February 11, 2101 is Saturday!
```

```
Further Simplify Calculation:
```

20 has remainder 6 when divided by 7.

```
60 has remainder 4 when divided by 7.
```

Get Day:  $2 + 2 \times 6 + 1 \times 4 = 18$ .

Or Day 6. September 16, 2101 is Saturday.

```
Years and years...
```

```
80 years? 20 leap years. 366 \times 20 days
60 regular years. 365 \times 60 days
Today is day 4.
It is day 4 + 366 \times 20 + 365 \times 60. Equivalent to?
```

What is remainder of 366 when dividing by 7?  $52 \times 7 + 2$ . What is remainder of 365 when dividing by 7? 1

Today is day 4.

Get Day:  $4+2 \times 20 + 1 \times 60 = 104$ Remainder when dividing by 7?  $104 = 14 \times 7 + 6$ . Or February 11, 2101 is Saturday!

Further Simplify Calculation:

20 has remainder 6 when divided by 7.

60 has remainder 4 when divided by 7.

Get Day:  $2 + 2 \times 6 + 1 \times 4 = 18$ .

Or Day 6. September 16, 2101 is Saturday.

"Reduce" at any time in calculation!

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m.

x is congruent to y modulo m or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by m.

... or x and y have the same remainder w.r.t. m.

*x* is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*.

*x* is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*.

*x* is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*.

Mod 7 equivalence classes:

*x* is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*. Mod 7 equivalence classes:

woo / equivalence classes

 $\{\ldots, -7, 0, 7, 14, \ldots\}$ 

*x* is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\}$ 

*x* is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$ 

*x* is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$ 

**Useful Fact:** Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

*x* is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*. Mod 7 equivalence classes:

 $\{\ldots, -7, 0, 7, 14, \ldots\}$   $\{\ldots, -6, 1, 8, 15, \ldots\}$ ...

**Useful Fact:** Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or " $a \equiv c \pmod{m}$  and  $b \equiv d \pmod{m}$ 

*x* is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$ 

**Useful Fact:** Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and  $b \equiv d \pmod{m}$   
 $\implies a+b \equiv c+d \pmod{m}$  and  $a \cdot b = c \cdot d \pmod{m}$ 

*x* is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$ 

**Useful Fact:** Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and  $b \equiv d \pmod{m}$   
 $\implies a+b \equiv c+d \pmod{m}$  and  $a \cdot b = c \cdot d \pmod{m}$ 

**Proof:** If  $a \equiv c \pmod{m}$ , then a = c + km for some integer k.

*x* is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$ 

**Useful Fact:** Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and  $b \equiv d \pmod{m}$   
 $\implies a+b \equiv c+d \pmod{m}$  and  $a \cdot b = c \cdot d \pmod{m}$ ?

**Proof:** If  $a \equiv c \pmod{m}$ , then a = c + km for some integer k. If  $b \equiv d \pmod{m}$ , then b = d + jm for some integer j.

*x* is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$ 

**Useful Fact:** Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and  $b \equiv d \pmod{m}$   
 $\implies a+b \equiv c+d \pmod{m}$  and  $a \cdot b = c \cdot d \pmod{m}$ ?

**Proof:** If  $a \equiv c \pmod{m}$ , then a = c + km for some integer k. If  $b \equiv d \pmod{m}$ , then b = d + jm for some integer j. Therefore,

*x* is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$ 

**Useful Fact:** Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and  $b \equiv d \pmod{m}$   
 $\implies a+b \equiv c+d \pmod{m}$  and  $a \cdot b = c \cdot d \pmod{m}$ ?

**Proof:** If  $a \equiv c \pmod{m}$ , then a = c + km for some integer k. If  $b \equiv d \pmod{m}$ , then b = d + jm for some integer j. Therefore, a+b = c+d+(k+j)m

*x* is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$ 

**Useful Fact:** Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and  $b \equiv d \pmod{m}$   
 $\implies a+b \equiv c+d \pmod{m}$  and  $a \cdot b = c \cdot d \pmod{m}$ 

**Proof:** If  $a \equiv c \pmod{m}$ , then a = c + km for some integer k. If  $b \equiv d \pmod{m}$ , then b = d + jm for some integer j. Therefore, a + b = c + d + (k + j)m and since k + j is integer.

*x* is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$ 

**Useful Fact:** Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and  $b \equiv d \pmod{m}$   
 $\implies a+b \equiv c+d \pmod{m}$  and  $a \cdot b = c \cdot d \pmod{m}$ ?

**Proof:** If  $a \equiv c \pmod{m}$ , then a = c + km for some integer k. If  $b \equiv d \pmod{m}$ , then b = d + jm for some integer j. Therefore, a+b = c+d+(k+j)m and since k+j is integer.  $\implies a+b \equiv c+d \pmod{m}$ .

*x* is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$ 

**Useful Fact:** Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and  $b \equiv d \pmod{m}$   
 $\implies a+b \equiv c+d \pmod{m}$  and  $a \cdot b = c \cdot d \pmod{m}$ "

**Proof:** If  $a \equiv c \pmod{m}$ , then a = c + km for some integer k. If  $b \equiv d \pmod{m}$ , then b = d + jm for some integer j. Therefore, a+b = c+d+(k+j)m and since k+j is integer.  $\implies a+b \equiv c+d \pmod{m}$ .

*x* is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*.

Mod 7 equivalence classes:

 $\{\ldots,-7,0,7,14,\ldots\} \ \{\ldots,-6,1,8,15,\ldots\} \ \ldots$ 

**Useful Fact:** Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or "
$$a \equiv c \pmod{m}$$
 and  $b \equiv d \pmod{m}$   
 $\implies a+b \equiv c+d \pmod{m}$  and  $a \cdot b = c \cdot d \pmod{m}$ "

**Proof:** If  $a \equiv c \pmod{m}$ , then a = c + km for some integer k. If  $b \equiv d \pmod{m}$ , then b = d + jm for some integer j. Therefore, a+b = c+d+(k+j)m and since k+j is integer.  $\implies a+b \equiv c+d \pmod{m}$ .

Can calculate with representative in  $\{0, \ldots, m-1\}$ .

x (mod m) or mod(x,m)

 $x \pmod{m}$  or mod(x,m)- remainder of x divided by m in  $\{0, \ldots, m-1\}$ .

 $x \pmod{m}$  or mod(x,m)- remainder of x divided by m in  $\{0, \ldots, m-1\}$ .

 $x \pmod{m}$  or mod(x,m)- remainder of x divided by m in  $\{0, \ldots, m-1\}$ .

 $mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m$ 

 $x \pmod{m}$  or mod(x,m)- remainder of x divided by  $m in \{0, ..., m-1\}$ .

mod  $(x,m) = x - \lfloor \frac{x}{m} \rfloor m$  $\lfloor \frac{x}{m} \rfloor$  is quotient.

x (mod m) or mod (x, m) - remainder of x divided by m in  $\{0, ..., m-1\}$ . mod  $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$  $\lfloor \frac{x}{m} \rfloor$  is quotient.

 $mod (29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12$ 

x (mod m) or mod (x, m) - remainder of x divided by m in {0,...,m-1}. mod (x, m) = x -  $\lfloor \frac{x}{m} \rfloor m$   $\lfloor \frac{x}{m} \rfloor$  is quotient. mod (29,12) = 29 - ( $\lfloor \frac{29}{12} \rfloor$ ) × 12 = 29 - (2) × 12

x (mod m) or mod (x,m) - remainder of x divided by m in {0,...,m-1}. mod (x,m) = x -  $\lfloor \frac{x}{m} \rfloor m$   $\lfloor \frac{x}{m} \rfloor$  is quotient. mod (29,12) = 29 - ( $\lfloor \frac{29}{12} \rfloor$ ) × 12 = 29 - (2) × 12 = 4

x (mod m) or mod (x, m) - remainder of x divided by m in {0,...,m-1}. mod (x, m) = x -  $\lfloor \frac{x}{m} \rfloor m$   $\lfloor \frac{x}{m} \rfloor$  is quotient. mod (29, 12) = 29 - ( $\lfloor \frac{29}{12} \rfloor$ ) × 12 = 29 - (2) × 12 = ¥ = 5

x (mod m) or mod (x,m) - remainder of x divided by m in  $\{0, ..., m-1\}$ . mod  $(x,m) = x - \lfloor \frac{x}{m} \rfloor m$   $\lfloor \frac{x}{m} \rfloor$  is quotient. mod  $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = \cancel{4} = 5$ Work in this system.

x (mod *m*) or mod (x, m) - remainder of x divided by m in {0,...,m-1}. mod (x, m) = x -  $\lfloor \frac{x}{m} \rfloor m$   $\lfloor \frac{x}{m} \rfloor$  is quotient. mod (29, 12) = 29 - ( $\lfloor \frac{29}{12} \rfloor$ ) × 12 = 29 - (2) × 12 =  $\cancel{x}$  = 5 Work in this system.  $a \equiv b \pmod{m}$ .

x (mod m) or mod (x, m) - remainder of x divided by m in  $\{0, ..., m-1\}$ . mod  $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$   $\lfloor \frac{x}{m} \rfloor$  is quotient. mod  $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = \cancel{4} = 5$ Work in this system.  $a \equiv b \pmod{m}$ .

Says two integers *a* and *b* are equivalent modulo *m*.

x (mod m) or mod (x,m) - remainder of x divided by m in {0,...,m-1}. mod (x,m) = x -  $\lfloor \frac{x}{m} \rfloor m$   $\lfloor \frac{x}{m} \rfloor$  is quotient. mod (29,12) = 29 - ( $\lfloor \frac{29}{12} \rfloor$ ) × 12 = 29 - (2) × 12 = X = 5Work in this system. 2 = b (mod m)

 $a \equiv b \pmod{m}$ .

Says two integers *a* and *b* are equivalent modulo *m*.

Modulus is m

x (mod m) or mod (x, m) - remainder of x divided by m in {0,...,m-1}. mod (x, m) = x -  $\lfloor \frac{x}{m} \rfloor m$   $\lfloor \frac{x}{m} \rfloor$  is quotient. mod (29,12) = 29 - ( $\lfloor \frac{29}{12} \rfloor$ ) × 12 = 29 - (2) × 12 = X = 5Work in this system.  $a = b \pmod{m}$ 

 $a \equiv b \pmod{m}$ .

Says two integers *a* and *b* are equivalent modulo *m*.

Modulus is m

6 ≡

x (mod m) or mod (x, m)- remainder of x divided by m in  $\{0, \ldots, m-1\}$ .  $mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m$  $\left|\frac{x}{m}\right|$  is quotient.  $mod(29, 12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = \cancel{4} = 5$ Work in this system.

 $a \equiv b \pmod{m}$ .

Says two integers a and b are equivalent modulo m.

Modulus is m

 $6 \equiv 3 + 3$ 

x (mod m) or mod (x, m)- remainder of x divided by m in  $\{0, \ldots, m-1\}$ .  $mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m$  $\left|\frac{x}{m}\right|$  is quotient.  $mod(29, 12) = 29 - (|\frac{29}{12}|) \times 12 = 29 - (2) \times 12 = 4 = 5$ Work in this system.

 $a \equiv b \pmod{m}$ .

Says two integers a and b are equivalent modulo m.

Modulus is m

 $6 \equiv 3 + 3 \equiv 3 + 10$ 

x (mod m) or mod (x, m) - remainder of x divided by m in  $\{0, ..., m-1\}$ . mod  $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$   $\lfloor \frac{x}{m} \rfloor$  is quotient. mod  $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5$ Work in this system.

 $a \equiv b \pmod{m}$ .

Says two integers *a* and *b* are equivalent modulo *m*.

Modulus is m

 $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$ .

x (mod m) or mod (x, m) - remainder of x divided by m in {0,...,m-1}. mod (x, m) = x -  $\lfloor \frac{x}{m} \rfloor m$   $\lfloor \frac{x}{m} \rfloor$  is quotient. mod (29,12) = 29 - ( $\lfloor \frac{29}{12} \rfloor$ ) × 12 = 29 - (2) × 12 = X = 5Work in this system.  $a = b \pmod{m}$ 

 $a \equiv b \pmod{m}$ .

Says two integers *a* and *b* are equivalent modulo *m*.

#### Modulus is m

$$\begin{split} & 6 \equiv 3+3 \equiv 3+10 \pmod{7}. \\ & 6 = \end{split}$$

x (mod m) or mod (x,m) - remainder of x divided by m in {0,...,m-1}. mod (x,m) = x -  $\lfloor \frac{x}{m} \rfloor m$   $\lfloor \frac{x}{m} \rfloor$  is quotient. mod (29,12) = 29 - ( $\lfloor \frac{29}{12} \rfloor$ ) × 12 = 29 - (2) × 12 = X = 5Work in this system.

 $a \equiv b \pmod{m}$ .

Says two integers *a* and *b* are equivalent modulo *m*.

#### Modulus is m

 $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$ .  $6 \equiv 3 + 3$ 

x (mod m) or mod (x,m) - remainder of x divided by m in {0,...,m-1}. mod (x,m) = x -  $\lfloor \frac{x}{m} \rfloor m$   $\lfloor \frac{x}{m} \rfloor$  is quotient. mod (29,12) = 29 - ( $\lfloor \frac{29}{12} \rfloor$ ) × 12 = 29 - (2) × 12 = X = 5Work in this system.  $2 = b \pmod{m}$ 

 $a \equiv b \pmod{m}$ .

Says two integers *a* and *b* are equivalent modulo *m*.

#### Modulus is m

- $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$ .
- 6 = 3 + 3 = 3 + 10

x (mod m) or mod (x, m) - remainder of x divided by m in  $\{0, ..., m-1\}$ . mod  $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$   $\lfloor \frac{x}{m} \rfloor$  is quotient. mod  $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = 4 = 5$ Work in this system.

 $a \equiv b \pmod{m}$ .

Says two integers *a* and *b* are equivalent modulo *m*.

Modulus is m

 $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$ .

 $6 = 3 + 3 = 3 + 10 \pmod{7}$ .

# Notation

x (mod m) or mod (x, m) - remainder of x divided by m in  $\{0, ..., m-1\}$ . mod  $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$   $\lfloor \frac{x}{m} \rfloor$  is quotient. mod  $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = X = 5$ Work in this system.

 $a \equiv b \pmod{m}$ .

Says two integers *a* and *b* are equivalent modulo *m*.

#### Modulus is m

 $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$ .

 $6 = 3 + 3 = 3 + 10 \pmod{7}$ .

Generally, not 6  $(mod 7) = 13 \pmod{7}$ .

# Notation

x (mod m) or mod (x, m) - remainder of x divided by m in  $\{0, ..., m-1\}$ . mod  $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$   $\lfloor \frac{x}{m} \rfloor$  is quotient. mod  $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = X = 5$ Work in this system.

 $a \equiv b \pmod{m}$ .

Says two integers a and b are equivalent modulo m.

#### Modulus is m

 $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$ .

 $6 = 3 + 3 = 3 + 10 \pmod{7}$ .

Generally, not 6  $(mod 7) = 13 \pmod{7}$ . But probably won't take off points,

# Notation

x (mod m) or mod (x, m) - remainder of x divided by m in  $\{0, ..., m-1\}$ . mod  $(x, m) = x - \lfloor \frac{x}{m} \rfloor m$   $\lfloor \frac{x}{m} \rfloor$  is quotient. mod  $(29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = X = 5$ Work in this system.

 $a \equiv b \pmod{m}$ .

Says two integers a and b are equivalent modulo m.

#### Modulus is m

 $6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}$ .

 $6 = 3 + 3 = 3 + 10 \pmod{7}$ .

Generally, not 6 (mod 7) = 13 (mod 7).

But probably won't take off points, still hard for us to read.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1;

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

**Multiplicative inverse of**  $x \mod m$  is y with  $xy = 1 \pmod{m}$ .

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

**Multiplicative inverse of**  $x \mod m$  is y with  $xy = 1 \pmod{m}$ .

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

**Multiplicative inverse of**  $x \mod m$  is y with  $xy = 1 \pmod{m}$ .

For 4 modulo 7 inverse is 2:  $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$ .

Can solve  $4x = 5 \pmod{7}$ .

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

**Multiplicative inverse of**  $x \mod m$  is y with  $xy = 1 \pmod{m}$ .

For 4 modulo 7 inverse is 2:  $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$ .

Can solve  $4x = 5 \pmod{7}$ .  $2 \cdot 4x = 2 \cdot 5 \pmod{7}$ .

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

**Multiplicative inverse of**  $x \mod m$  is y with  $xy = 1 \pmod{m}$ .

Can solve 
$$4x = 5 \pmod{7}$$
.  
 $2 \cdot 4x = 2 \cdot 5 \pmod{7}$   
 $8x = 10 \pmod{7}$ 

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

**Multiplicative inverse of**  $x \mod m$  is y with  $xy = 1 \pmod{m}$ .

Can solve 
$$4x = 5 \pmod{7}$$
.  
 $2 \cdot 4x = 2 \cdot 5 \pmod{7}$   
 $8x = 10 \pmod{7}$   
 $x = 3 \pmod{7}$ 

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

**Multiplicative inverse of**  $x \mod m$  is y with  $xy = 1 \pmod{m}$ .

```
Can solve 4x = 5 \pmod{7}.

2 \cdot 4x = 2 \cdot 5 \pmod{7}

8x = 10 \pmod{7}

x = 3 \pmod{7}

Check!
```

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

**Multiplicative inverse of**  $x \mod m$  is y with  $xy = 1 \pmod{m}$ .

Can solve 
$$4x = 5 \pmod{7}$$
.  
 $2 \cdot 4x = 2 \cdot 5 \pmod{7}$   
 $8x = 10 \pmod{7}$   
 $x = 3 \pmod{7}$   
Check!  $4(3) = 12 = 5 \pmod{7}$ .

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

**Multiplicative inverse of**  $x \mod m$  is y with  $xy = 1 \pmod{m}$ .

For 4 modulo 7 inverse is 2:  $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$ .

Can solve  $4x = 5 \pmod{7}$ .  $x = 3 \pmod{7}$  ::: Check!  $4(3) = 12 = 5 \pmod{7}$ .

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

**Multiplicative inverse of**  $x \mod m$  is y with  $xy = 1 \pmod{m}$ .

For 4 modulo 7 inverse is 2:  $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$ .

Can solve  $4x = 5 \pmod{7}$ .  $x = 3 \pmod{7}$  ::: Check!  $4(3) = 12 = 5 \pmod{7}$ .

For 8 modulo 12: no multiplicative inverse!

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

**Multiplicative inverse of**  $x \mod m$  is y with  $xy = 1 \pmod{m}$ .

For 4 modulo 7 inverse is 2:  $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$ .

Can solve  $4x = 5 \pmod{7}$ .  $x = 3 \pmod{7}$  ::: Check!  $4(3) = 12 = 5 \pmod{7}$ .

For 8 modulo 12: no multiplicative inverse!

"Common factor of 4"

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

**Multiplicative inverse of**  $x \mod m$  is y with  $xy = 1 \pmod{m}$ .

For 4 modulo 7 inverse is 2:  $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$ .

Can solve  $4x = 5 \pmod{7}$ .  $x = 3 \pmod{7}$  ::: Check!  $4(3) = 12 = 5 \pmod{7}$ .

For 8 modulo 12: no multiplicative inverse!

"Common factor of 4"  $\implies$ 8*k* - 12*l* is a multiple of four for any *l* and *k*  $\implies$ 

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

**Multiplicative inverse of**  $x \mod m$  is y with  $xy = 1 \pmod{m}$ .

For 4 modulo 7 inverse is 2:  $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$ .

Can solve  $4x = 5 \pmod{7}$ .  $x = 3 \pmod{7}$  ::: Check!  $4(3) = 12 = 5 \pmod{7}$ .

For 8 modulo 12: no multiplicative inverse!

"Common factor of 4"  $\implies$ 8k - 12l is a multiple of four for any l and k  $\implies$ 8k  $\neq$  1 (mod 12) for any k.

# Poll

#### Mark true statements.

(A) Mutliplicative inverse of 2 mod 5 is 3 mod 5.

- (B) The multiplicative inverse of  $((n-1) \pmod{n} = ((n-1) \pmod{n})$ .
- (C) Multiplicative inverse of 2 mod 5 is 0.5.
- (D) Multiplicative inverse of  $4 = -1 \pmod{5}$ .
- (E) (-1)x(-1) = 1. Woohoo.

(F) Multiplicative inverse of 4 mod 5 is 4 mod 5.

# Poll

#### Mark true statements.

(A) Mutliplicative inverse of 2 mod 5 is 3 mod 5.

- (B) The multiplicative inverse of  $((n-1) \pmod{n} = ((n-1) \pmod{n})$ .
- (C) Multiplicative inverse of 2 mod 5 is 0.5.
- (D) Multiplicative inverse of  $4 = -1 \pmod{5}$ .
- (E) (-1)x(-1) = 1. Woohoo.

(F) Multiplicative inverse of 4 mod 5 is 4 mod 5.

(C) is false. 0.5 has no meaning in arithmetic modulo 5.

#### Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

#### Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

**Proof**  $\implies$ : **Claim:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo m.

#### Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

**Proof**  $\implies$ : **Claim:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo m.

Each of *m* numbers in *S* correspond to one of *m* equivalence classes modulo *m*.

#### Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

**Proof**  $\implies$ : **Claim:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo m.

Each of *m* numbers in *S* correspond to one of *m* equivalence classes modulo *m*.

 $\implies$  One must correspond to 1 modulo *m*.

#### Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

**Proof**  $\implies$ : **Claim:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo m.

Each of *m* numbers in *S* correspond to one of *m* equivalence classes modulo *m*.

 $\implies$  One must correspond to 1 modulo *m*. Inverse Exists!

#### Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

**Proof**  $\implies$ : **Claim:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo m.

Each of *m* numbers in *S* correspond to one of *m* equivalence classes modulo *m*.

 $\implies$  One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim:

#### Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

**Proof**  $\implies$ : **Claim:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

Each of *m* numbers in *S* correspond to one of *m* equivalence classes modulo *m*.

 $\implies$  One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then  $\exists a, b \in \{0, \dots, m-1\}, a \neq b$ ,

#### Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

**Proof**  $\implies$ : **Claim:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo m.

Each of *m* numbers in *S* correspond to one of *m* equivalence classes modulo *m*.

 $\implies$  One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then  $\exists a, b \in \{0, ..., m-1\}$ ,  $a \neq b$ , where  $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ 

#### Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

**Proof**  $\implies$ : **Claim:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo m.

Each of *m* numbers in *S* correspond to one of *m* equivalence classes modulo *m*.

 $\implies$  One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then  $\exists a, b \in \{0, ..., m-1\}$ ,  $a \neq b$ , where  $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k.

#### Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

**Proof**  $\implies$ : **Claim:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo m.

Each of *m* numbers in *S* correspond to one of *m* equivalence classes modulo *m*.

 $\implies$  One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then  $\exists a, b \in \{0, ..., m-1\}$ ,  $a \neq b$ , where  $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k. gcd(x,m) = 1

#### Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

**Proof**  $\implies$ : **Claim:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo m.

Each of *m* numbers in *S* correspond to one of *m* equivalence classes modulo *m*.

 $\implies$  One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then  $\exists a, b \in \{0, ..., m-1\}$ ,  $a \neq b$ , where  $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k.

gcd(x,m) = 1

 $\implies$  Prime factorization of *m* and *x* do not contain common primes.

#### Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

**Proof**  $\implies$ : **Claim:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo m.

Each of *m* numbers in *S* correspond to one of *m* equivalence classes modulo *m*.

 $\implies$  One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then  $\exists a, b \in \{0, ..., m-1\}$ ,  $a \neq b$ , where  $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k.

gcd(x,m) = 1

 $\implies$  Prime factorization of *m* and *x* do not contain common primes.

 $\implies$  (a-b) factorization contains all primes in *m*'s factorization.

#### Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

**Proof**  $\implies$ : **Claim:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo m.

Each of *m* numbers in *S* correspond to one of *m* equivalence classes modulo *m*.

 $\implies$  One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then  $\exists a, b \in \{0, ..., m-1\}$ ,  $a \neq b$ , where  $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k.

gcd(x,m) = 1

⇒ Prime factorization of *m* and *x* do not contain common primes. ⇒ (a-b) factorization contains all primes in *m*'s factorization. So (a-b) has to be multiple of *m*.

#### Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

**Proof**  $\implies$ : **Claim:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo m.

Each of *m* numbers in *S* correspond to one of *m* equivalence classes modulo *m*.

 $\implies$  One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then  $\exists a, b \in \{0, ..., m-1\}$ ,  $a \neq b$ , where  $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k.

gcd(x,m) = 1

⇒ Prime factorization of *m* and *x* do not contain common primes. ⇒ (a-b) factorization contains all primes in *m*'s factorization. So (a-b) has to be multiple of *m*.

$$\implies (a-b) \ge m.$$

# Greatest Common Divisor and Inverses.

#### Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

**Proof**  $\implies$ : **Claim:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo m.

Each of *m* numbers in *S* correspond to one of *m* equivalence classes modulo *m*.

 $\implies$  One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then  $\exists a, b \in \{0, ..., m-1\}$ ,  $a \neq b$ , where  $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k.

gcd(x,m) = 1

⇒ Prime factorization of *m* and *x* do not contain common primes. ⇒ (a-b) factorization contains all primes in *m*'s factorization. So (a-b) has to be multiple of *m*.

 $\implies$   $(a-b) \ge m$ . But  $a, b \in \{0, ..., m-1\}$ .

# Greatest Common Divisor and Inverses.

#### Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

**Proof**  $\implies$ : **Claim:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo m.

Each of *m* numbers in *S* correspond to one of *m* equivalence classes modulo *m*.

 $\implies$  One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then  $\exists a, b \in \{0, ..., m-1\}$ ,  $a \neq b$ , where  $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k.

gcd(x,m) = 1

⇒ Prime factorization of *m* and *x* do not contain common primes. ⇒ (a-b) factorization contains all primes in *m*'s factorization. So (a-b) has to be multiple of *m*.

 $\implies$   $(a-b) \ge m$ . But  $a, b \in \{0, ..., m-1\}$ . Contradiction.

# Greatest Common Divisor and Inverses.

#### Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

**Proof**  $\implies$ : **Claim:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo m.

Each of *m* numbers in *S* correspond to one of *m* equivalence classes modulo *m*.

 $\implies$  One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then  $\exists a, b \in \{0, ..., m-1\}$ ,  $a \neq b$ , where  $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k.

gcd(x,m) = 1

⇒ Prime factorization of *m* and *x* do not contain common primes. ⇒ (a-b) factorization contains all primes in *m*'s factorization. So (a-b) has to be multiple of *m*.

 $\implies$   $(a-b) \ge m$ . But  $a, b \in \{0, ..., m-1\}$ . Contradiction.

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains

 $y \equiv 1 \mod m$  if all distinct modulo m.

. . .

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4... S =

...

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\}$ 

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

... For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ 

...

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*. ... For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ 

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*. ... For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ 

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*. ... For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ Not distinct.

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo m. ... For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ Not distinct. Common factor 2.

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*. ... For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ Not distinct. Common factor 2. Can't be 1.

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*. ... For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, \dots, (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo m. ... For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ Not distinct. Common factor 2. Can't be 1. No inverse. For x = 5 and m = 6.  $S = \{0, 4, 2, 0, 4, 2\}$ 

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For 
$$x = 5$$
 and  $m = 6$ .  
 $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\}$ 

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For 
$$x = 5$$
 and  $m = 6$ .  
 $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ 

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For 
$$x = 5$$
 and  $m = 6$ .  
 $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ 

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.  $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct,

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.  $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1!

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ Not distinct. Common factor 2. Can't be 1. No inverse

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.  $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

... For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ 

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

 $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

(Hmm. What normal number is it own multiplicative inverse?)

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

... For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ 

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

 $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

(Hmm. What normal number is it own multiplicative inverse?) 1

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ 

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.

 $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ 

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ 

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.  $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

 $5x = 3 \pmod{6}$ 

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ 

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.  $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

 $5x = 3 \pmod{6}$  What is x?

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ 

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.  $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

 $5x = 3 \pmod{6}$  What is x? Multiply both sides by 5.

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ 

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.  $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

$$5x = 3 \pmod{6}$$
 What is x? Multiply both sides by 5.  
x = 15

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ 

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.  $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

 $5x = 3 \pmod{6}$  What is x? Multiply both sides by 5. x =  $15 = 3 \pmod{6}$ 

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

... For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ 

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.  $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

 $5x = 3 \pmod{6}$  What is x? Multiply both sides by 5. x =  $15 = 3 \pmod{6}$ 

 $4x = 3 \pmod{6}$ 

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ 

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.  $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

 $5x = 3 \pmod{6}$  What is x? Multiply both sides by 5. x =  $15 = 3 \pmod{6}$ 

 $4x = 3 \pmod{6}$  No solutions.

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ 

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.  $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

 $5x = 3 \pmod{6}$  What is x? Multiply both sides by 5. x =  $15 = 3 \pmod{6}$ 

 $4x = 3 \pmod{6}$  No solutions. Can't get an odd.

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ 

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.  $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

 $5x = 3 \pmod{6}$  What is x? Multiply both sides by 5. x =  $15 = 3 \pmod{6}$ 

 $4x = 3 \pmod{6}$  No solutions. Can't get an odd.  $4x = 2 \pmod{6}$ 

#### Proof review. Consequence.

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ 

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.  $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

 $5x = 3 \pmod{6}$  What is x? Multiply both sides by 5. x =  $15 = 3 \pmod{6}$ 

 $4x = 3 \pmod{6}$  No solutions. Can't get an odd.  $4x = 2 \pmod{6}$  Two solutions!

#### Proof review. Consequence.

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ 

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.  $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

 $5x = 3 \pmod{6}$  What is x? Multiply both sides by 5. x =  $15 = 3 \pmod{6}$ 

 $4x = 3 \pmod{6}$  No solutions. Can't get an odd.  $4x = 2 \pmod{6}$  Two solutions!  $x = 2,5 \pmod{6}$ 

#### Proof review. Consequence.

**Thm:** If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

**Proof Sketch:** The set  $S = \{0x, 1x, ..., (m-1)x\}$  contains  $y \equiv 1 \mod m$  if all distinct modulo *m*.

For x = 4 and m = 6. All products of 4...  $S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)  $S = \{0, 4, 2, 0, 4, 2\}$ 

Not distinct. Common factor 2. Can't be 1. No inverse.

For x = 5 and m = 6.  $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

 $5x = 3 \pmod{6}$  What is x? Multiply both sides by 5. x =  $15 = 3 \pmod{6}$ 

 $4x = 3 \pmod{6}$  No solutions. Can't get an odd.  $4x = 2 \pmod{6}$  Two solutions!  $x = 2,5 \pmod{6}$ 

Very different for elements with inverses.

If gcd(x,m) = 1.

If gcd(x,m) = 1. Then the function  $f(a) = xa \mod m$  is a bijection.

If gcd(x,m) = 1.

Then the function  $f(a) = xa \mod m$  is a bijection. One to one: there is a unique pre-image.

If gcd(x,m) = 1. Then the function  $f(a) = xa \mod m$  is a bijection. One to one: there is a unique pre-image. Onto: the sizes of the domain and co-domain are the same. x = 3, m = 4.

If gcd(x,m) = 1. Then the function  $f(a) = xa \mod m$  is a bijection. One to one: there is a unique pre-image. Onto: the sizes of the domain and co-domain are the same. x = 3, m = 4. $f(1) = 3(1) = 3 \pmod{4},$ 

If gcd(x,m) = 1. Then the function  $f(a) = xa \mod m$  is a bijection. One to one: there is a unique pre-image. Onto: the sizes of the domain and co-domain are the same. x = 3, m = 4. $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4},$ 

If gcd(x,m) = 1. Then the function  $f(a) = xa \mod m$  is a bijection. One to one: there is a unique pre-image. Onto: the sizes of the domain and co-domain are the same. x = 3, m = 4. $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.$ 

If gcd(x,m) = 1. Then the function  $f(a) = xa \mod m$  is a bijection. One to one: there is a unique pre-image. Onto: the sizes of the domain and co-domain are the same. x = 3, m = 4.  $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.$ Oh yeah.

If gcd(x,m) = 1. Then the function  $f(a) = xa \mod m$  is a bijection. One to one: there is a unique pre-image. Onto: the sizes of the domain and co-domain are the same. x = 3, m = 4.  $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}$ . Oh yeah. f(0) = 0.

If gcd(x,m) = 1. Then the function  $f(a) = xa \mod m$  is a bijection. One to one: there is a unique pre-image. Onto: the sizes of the domain and co-domain are the same. x = 3, m = 4.  $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.$ Oh yeah. f(0) = 0.

Bijection

If gcd(x,m) = 1. Then the function  $f(a) = xa \mod m$  is a bijection. One to one: there is a unique pre-image. Onto: the sizes of the domain and co-domain are the same. x = 3, m = 4.  $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}$ . Oh yeah. f(0) = 0.

Bijection  $\equiv$  unique pre-image and same size.

If gcd(x,m) = 1. Then the function  $f(a) = xa \mod m$  is a bijection. One to one: there is a unique pre-image. Onto: the sizes of the domain and co-domain are the same. x = 3, m = 4.  $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}$ . Oh yeah. f(0) = 0.

Bijection  $\equiv$  unique pre-image and same size.

If gcd(x,m) = 1. Then the function  $f(a) = xa \mod m$  is a bijection. One to one: there is a unique pre-image. Onto: the sizes of the domain and co-domain are the same. x = 3, m = 4.  $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}$ . Oh yeah. f(0) = 0.

Bijection  $\equiv$  unique pre-image and same size.

All the images are distinct.  $\implies$  unique pre-image for any image.

x = 2, m = 4.

If gcd(x,m) = 1. Then the function  $f(a) = xa \mod m$  is a bijection. One to one: there is a unique pre-image. Onto: the sizes of the domain and co-domain are the same. x = 3, m = 4.  $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.$ Oh yeah. f(0) = 0.

Bijection  $\equiv$  unique pre-image and same size.

$$x = 2, m = 4.$$
  
 $f(1) = 2, f(2) = 0, f(3) = 2$ 

If gcd(x,m) = 1. Then the function  $f(a) = xa \mod m$  is a bijection. One to one: there is a unique pre-image. Onto: the sizes of the domain and co-domain are the same. x = 3, m = 4.  $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.$ Oh yeah. f(0) = 0.

Bijection  $\equiv$  unique pre-image and same size.

$$x = 2, m = 4.$$
  
 $f(1) = 2, f(2) = 0, f(3) = 2$   
Oh yeah.

If gcd(x,m) = 1. Then the function  $f(a) = xa \mod m$  is a bijection. One to one: there is a unique pre-image. Onto: the sizes of the domain and co-domain are the same. x = 3, m = 4.  $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.$ Oh yeah. f(0) = 0.

Bijection  $\equiv$  unique pre-image and same size.

$$x = 2, m = 4.$$
  
 $f(1) = 2, f(2) = 0, f(3) = 2$   
Oh yeah.  $f(0) = 0.$ 

If gcd(x,m) = 1. Then the function  $f(a) = xa \mod m$  is a bijection. One to one: there is a unique pre-image. Onto: the sizes of the domain and co-domain are the same. x = 3, m = 4.  $f(1) = 3(1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}.$ Oh yeah. f(0) = 0.

Bijection  $\equiv$  unique pre-image and same size.

All the images are distinct.  $\implies$  unique pre-image for any image.

$$x = 2, m = 4.$$
  
 $f(1) = 2, f(2) = 0, f(3) = 2$   
Oh yeah.  $f(0) = 0.$ 

Not a bijection.

#### Poll

#### Which is bijection?

(A) f(x) = x for domain and range being  $\mathbb{R}$ (B)  $f(x) = ax \pmod{(n)}$  for  $x \in \{0, ..., n-1\}$  and gcd(a, n) = 2(C)  $f(x) = ax \pmod{n}$  for  $x \in \{0, ..., n-1\}$  and gcd(a, n) = 1

### Poll

#### Which is bijection?

(A) f(x) = x for domain and range being  $\mathbb{R}$ (B)  $f(x) = ax \pmod{(n)}$  for  $x \in \{0, ..., n-1\}$  and gcd(a, n) = 2(C)  $f(x) = ax \pmod{n}$  for  $x \in \{0, ..., n-1\}$  and gcd(a, n) = 1(B) is not.

Thm: If  $gcd(x,m) \neq 1$  then x has no multiplicative inverse modulo m.

Thm: If  $gcd(x,m) \neq 1$  then x has no multiplicative inverse modulo m. Assume a is  $x^{-1}$ , or ax = 1 + km.

Thm: If  $gcd(x,m) \neq 1$  then x has no multiplicative inverse modulo m. Assume a is  $x^{-1}$ , or ax = 1 + km. x = nd and  $m = \ell d$  for d > 1.

Thm: If  $gcd(x,m) \neq 1$  then x has no multiplicative inverse modulo m. Assume a is  $x^{-1}$ , or ax = 1 + km. x = nd and  $m = \ell d$  for d > 1. Thus,

Thm: If  $gcd(x,m) \neq 1$  then x has no multiplicative inverse modulo m. Assume a is  $x^{-1}$ , or ax = 1 + km. x = nd and  $m = \ell d$  for d > 1. Thus,

$$a(nd) = 1 + k\ell d$$
 or  $d(na - k\ell) = 1$ .

Thm: If  $gcd(x,m) \neq 1$  then x has no multiplicative inverse modulo m. Assume a is  $x^{-1}$ , or ax = 1 + km. x = nd and  $m = \ell d$  for d > 1. Thus,  $a(nd) = 1 + k\ell d$  or  $d(na - k\ell) = 1$ . But d > 1 and  $n = (na - k\ell) \in \mathbb{Z}$ .

Thm: If  $gcd(x,m) \neq 1$  then x has no multiplicative inverse modulo m. Assume a is  $x^{-1}$ , or ax = 1 + km. x = nd and  $m = \ell d$  for d > 1. Thus,  $a(nd) = 1 + k\ell d$  or  $d(na - k\ell) = 1$ .

But d > 1 and  $n = (na - k\ell) \in \mathbb{Z}$ .

so  $dn \neq 1$  and dn = 1. Contradiction.

Thm: If  $gcd(x,m) \neq 1$  then x has no multiplicative inverse modulo m. Assume a is  $x^{-1}$ , or ax = 1 + km. x = nd and  $m = \ell d$  for d > 1. Thus,  $a(nd) = 1 + k\ell d$  or  $d(na - k\ell) = 1$ . But d > 1 and  $n = (na - k\ell) \in \mathbb{Z}$ .

so  $dn \neq 1$  and dn = 1. Contradiction.

How to find the inverse?

How to find the inverse?

How to find if x has an inverse modulo m?

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m).

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m). Greater than 1?

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

How to find the inverse?

How to find if x has an inverse modulo m?

```
Find gcd (x, m).
Greater than 1? No multiplicative inverse.
Equal to 1?
```

How to find the inverse?

How to find if x has an inverse modulo m?

```
Find gcd (x, m).
```

Greater than 1? No multiplicative inverse. Equal to 1? Multiplicative inverse.

How to find the inverse?

How to find if x has an inverse modulo m?

```
Find gcd (x, m).
Greater than 1? No multiplicative inverse.
Equal to 1? Multiplicative inverse.
```

Algorithm:

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m). Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m.

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m. Very slow.

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m).

Greater than 1? No multiplicative inverse.

Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m. Very slow.

Next up.

Next up.

Next up. Euclid's Algorithm.

Next up.

Euclid's Algorithm. Runtime.

Next up.

Euclid's Algorithm. Runtime. Euclid's Extended Algorithm.

Does 2 have an inverse mod 8?

Does 2 have an inverse mod 8? No.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any  $k \in \mathbb{N}$ .

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any  $k \in \mathbb{N}$ . Does 2 have an inverse mod 9?

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any  $k \in \mathbb{N}$ . Does 2 have an inverse mod 9? Yes.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any  $k \in \mathbb{N}$ . Does 2 have an inverse mod 9? Yes. 5

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any  $k \in \mathbb{N}$ . Does 2 have an inverse mod 9? Yes. 5

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any  $k \in \mathbb{N}$ . Does 2 have an inverse mod 9? Yes. 5  $2(5) = 10 = 1 \mod 9$ .

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any  $k \in \mathbb{N}$ . Does 2 have an inverse mod 9? Yes. 5  $2(5) = 10 = 1 \mod 9$ . Does 6 have an inverse mod 9?

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any  $k \in \mathbb{N}$ . Does 2 have an inverse mod 9? Yes. 5  $2(5) = 10 = 1 \mod 9$ .

Does 6 have an inverse mod 9? No.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any  $k \in \mathbb{N}$ . Does 2 have an inverse mod 9? Yes. 5  $2(5) = 10 = 1 \mod 9$ .

Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any  $k \in \mathbb{N}$ .

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any  $k \in \mathbb{N}$ . Does 2 have an inverse mod 9? Yes. 5  $2(5) = 10 = 1 \mod 9$ . Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any  $k \in \mathbb{N}$ . 3 = gcd(6,9)!

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any  $k \in \mathbb{N}$ . Does 2 have an inverse mod 9? Yes. 5  $2(5) = 10 = 1 \mod 9$ . Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any  $k \in \mathbb{N}$ . 3 = gcd(6,9)!

x has an inverse modulo m if and only if

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any  $k \in \mathbb{N}$ . Does 2 have an inverse mod 9? Yes. 5  $2(5) = 10 = 1 \mod 9$ . Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any  $k \in \mathbb{N}$ . 3 = gcd(6,9)!x has an inverse modulo m if and only if

gcd(x,m) > 1?

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any  $k \in \mathbb{N}$ . Does 2 have an inverse mod 9? Yes. 5  $2(5) = 10 = 1 \mod 9$ . Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any  $k \in \mathbb{N}$ . 3 = gcd(6,9)! x has an inverse modulo m if and only if gcd(x,m) > 1? No.

gcd(x,m) = 1?

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any  $k \in \mathbb{N}$ . Does 2 have an inverse mod 9? Yes. 5  $2(5) = 10 = 1 \mod 9$ . Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any  $k \in \mathbb{N}$ . 3 = gcd(6,9)! x has an inverse modulo m if and only if gcd(x,m) > 1? No.

gcd(x,m) = 1? Yes.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0 + 8k for any  $k \in \mathbb{N}$ . Does 2 have an inverse mod 9? Yes. 5  $2(5) = 10 = 1 \mod 9$ . Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0 + 9k for any  $k \in \mathbb{N}$ . 3 = gcd(6,9)! x has an inverse modulo m if and only if gcd(x,m) > 1? No.

gcd(x,m) = 1? Yes.

Now what?:

Compute gcd!

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any  $k \in \mathbb{N}$ . Does 2 have an inverse mod 9? Yes. 5  $2(5) = 10 = 1 \mod 9$ . Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any  $k \in \mathbb{N}$ . 3 = gcd(6,9)!*x* has an inverse modulo *m* if and only if

gcd(x,m) > 1? No. gcd(x,m) = 1? Yes.

Now what?:

Compute gcd!

Compute Inverse modulo *m*.

Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from 0+8k for any  $k \in \mathbb{N}$ . Does 2 have an inverse mod 9? Yes. 5  $2(5) = 10 = 1 \mod 9$ . Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from 0+9k for any  $k \in \mathbb{N}$ . 3 = gcd(6,9)!*x* has an inverse modulo *m* if and only if

gcd(x,m) > 1? No. gcd(x,m) = 1? Yes.

Now what?:

Compute gcd!

Compute Inverse modulo *m*.

**Notation:** *d*|*x* means "*d* divides *x*" or

# **Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Fact:** If d|x and d|y then d|(x+y) and d|(x-y).

Notation: d|x means "d divides x" or x = kd for some integer k. Fact: If d|x and d|y then d|(x+y) and d|(x-y). Is it a fact?

Notation: d|x means "d divides x" or x = kd for some integer k. Fact: If d|x and d|y then d|(x + y) and d|(x - y). Is it a fact? Yes?

Notation: d|x means "d divides x" or x = kd for some integer k. Fact: If d|x and d|y then d|(x + y) and d|(x - y). Is it a fact? Yes? No?

Notation: d|x means "d divides x" or x = kd for some integer k. Fact: If d|x and d|y then d|(x + y) and d|(x - y). Is it a fact? Yes? No? Proof: d|x and d|y or

Notation: d|x means "d divides x" or x = kd for some integer k. Fact: If d|x and d|y then d|(x + y) and d|(x - y). Is it a fact? Yes? No? Proof: d|x and d|y or  $x = \ell d$  and y = kd

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Fact:** If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

**Proof:** d|x and d|y or  $x = \ell d$  and y = kd $\implies x - y = kd - \ell d$ 

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Fact:** If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

**Proof:** d|x and d|y or  $x = \ell d$  and y = kd $\implies x - y = kd - \ell d = (k - \ell)d$ 

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Fact:** If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

**Proof:** 
$$d|x$$
 and  $d|y$  or  
 $x = \ell d$  and  $y = kd$   
 $\implies x - y = kd - \ell d = (k - \ell)d \implies d|(x - y)$ 

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Fact:** If d|x and d|y then d|(x+y) and d|(x-y).

Is it a fact? Yes? No?

**Proof:** 
$$d|x$$
 and  $d|y$  or  
 $x = \ell d$  and  $y = kd$   
 $\implies x - y = kd - \ell d = (k - \ell)d \implies d|(x - y)$ 

**Notation:** *d*|*x* means "*d* divides *x*" or

# **Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Lemma 1:** If d|x and d|y then d|y and  $d| \mod (x, y)$ .

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Lemma 1:** If d|x and d|y then d|y and  $d| \mod (x, y)$ .

Proof:

 $mod(x,y) = x - \lfloor x/y \rfloor \cdot y$ 

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Lemma 1:** If d|x and d|y then d|y and  $d| \mod (x, y)$ .

Proof:

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Lemma 1:** If d|x and d|y then d|y and  $d| \mod (x, y)$ .

Proof:

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Lemma 1:** If d|x and d|y then d|y and  $d| \mod (x, y)$ .

Proof:

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Lemma 1:** If d|x and d|y then d|y and  $d| \mod (x, y)$ .

Proof:

Therefore  $d \mod (x, y)$ .

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Lemma 1:** If d|x and d|y then d|y and  $d| \mod (x, y)$ .

Proof:

$$\begin{array}{lll} \operatorname{mod} (x,y) &=& x - \lfloor x/y \rfloor \cdot y \\ &=& x - \lfloor s \rfloor \cdot y & \text{for integer } s \\ &=& kd - s\ell d & \text{for integers } k, \ell \text{ where } x = kd \text{ and } y = \ell d \\ &=& (k - s\ell)d \end{array}$$

Therefore  $d \mod (x, y)$ . And  $d \mid y$  since it is in condition.

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Lemma 1:** If d|x and d|y then d|y and  $d| \mod (x, y)$ .

Proof:

Therefore  $d \mod (x, y)$ . And d | y since it is in condition.

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Lemma 1:** If d|x and d|y then d|y and  $d| \mod (x, y)$ .

Proof:

$$\begin{array}{lll} \operatorname{mod} (x,y) &=& x - \lfloor x/y \rfloor \cdot y \\ &=& x - \lfloor s \rfloor \cdot y & \text{for integer } s \\ &=& kd - s\ell d & \text{for integers } k, \ell \text{ where } x = kd \text{ and } y = \ell d \\ &=& (k - s\ell)d \end{array}$$

Therefore  $d \mod (x, y)$ . And d | y since it is in condition.

**Lemma 2:** If d|y and  $d| \mod (x, y)$  then d|y and d|x. **Proof...:** Similar.

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Lemma 1:** If d|x and d|y then d|y and  $d| \mod (x, y)$ .

Proof:

$$\begin{array}{lll} \operatorname{mod} (x,y) &=& x - \lfloor x/y \rfloor \cdot y \\ &=& x - \lfloor s \rfloor \cdot y & \text{for integer } s \\ &=& kd - s\ell d & \text{for integers } k, \ell \text{ where } x = kd \text{ and } y = \ell d \\ &=& (k - s\ell)d \end{array}$$

Therefore  $d \mod (x, y)$ . And d | y since it is in condition.

**Lemma 2:** If d|y and  $d| \mod (x, y)$  then d|y and d|x. **Proof...:** Similar. Try this at home.

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Lemma 1:** If d|x and d|y then d|y and  $d| \mod (x, y)$ .

Proof:

$$\begin{array}{lll} \operatorname{mod} (x,y) &=& x - \lfloor x/y \rfloor \cdot y \\ &=& x - \lfloor s \rfloor \cdot y & \text{for integer } s \\ &=& kd - s\ell d & \text{for integers } k, \ell \text{ where } x = kd \text{ and } y = \ell d \\ &=& (k - s\ell)d \end{array}$$

Therefore  $d \mod (x, y)$ . And d | y since it is in condition.

**Lemma 2:** If d|y and  $d| \mod (x, y)$  then d|y and d|x. **Proof...:** Similar. Try this at home.

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Lemma 1:** If d|x and d|y then d|y and  $d| \mod (x, y)$ .

Proof:

$$\begin{array}{lll} \operatorname{mod} (x,y) &=& x - \lfloor x/y \rfloor \cdot y \\ &=& x - \lfloor s \rfloor \cdot y & \text{for integer } s \\ &=& kd - s\ell d & \text{for integers } k, \ell \text{ where } x = kd \text{ and } y = \ell d \\ &=& (k - s\ell)d \end{array}$$

Therefore  $d \mod (x, y)$ . And d | y since it is in condition.

**Lemma 2:** If d|y and  $d| \mod (x, y)$  then d|y and d|x. **Proof...:** Similar. Try this at home.

**GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).

⊡ish.

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Lemma 1:** If d|x and d|y then d|y and  $d| \mod (x, y)$ .

Proof:

$$\begin{array}{lll} \operatorname{mod} (x,y) &=& x - \lfloor x/y \rfloor \cdot y \\ &=& x - \lfloor s \rfloor \cdot y & \text{for integer } s \\ &=& kd - s\ell d & \text{for integers } k, \ell \text{ where } x = kd \text{ and } y = \ell d \\ &=& (k - s\ell)d \end{array}$$

Therefore  $d \mod (x, y)$ . And d | y since it is in condition.

**Lemma 2:** If d|y and  $d| \mod (x, y)$  then d|y and d|x. **Proof...:** Similar. Try this at home.

**GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)). **Proof:** *x* and *y* have **same** set of common divisors as *x* and mod(x, y) by Lemma 1 and 2. □ish.

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Lemma 1:** If d|x and d|y then d|y and  $d| \mod (x, y)$ .

Proof:

$$\begin{array}{lll} \operatorname{mod} (x,y) &=& x - \lfloor x/y \rfloor \cdot y \\ &=& x - \lfloor s \rfloor \cdot y & \text{for integer } s \\ &=& kd - s\ell d & \text{for integers } k, \ell \text{ where } x = kd \text{ and } y = \ell d \\ &=& (k - s\ell)d \end{array}$$

Therefore  $d \mod (x, y)$ . And d | y since it is in condition.

**Lemma 2:** If d|y and  $d| \mod (x, y)$  then d|y and d|x. **Proof...:** Similar. Try this at home.

**GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)). **Proof:** *x* and *y* have **same** set of common divisors as *x* and mod (x, y) by Lemma 1 and 2. Same common divisors  $\implies$  largest is the same. ⊡ish.

**Notation:** d|x means "*d* divides *x*" or x = kd for some integer *k*.

**Lemma 1:** If d|x and d|y then d|y and  $d| \mod (x, y)$ .

Proof:

$$\begin{array}{lll} \operatorname{mod} (x,y) &=& x - \lfloor x/y \rfloor \cdot y \\ &=& x - \lfloor s \rfloor \cdot y & \text{for integer } s \\ &=& kd - s\ell d & \text{for integers } k, \ell \text{ where } x = kd \text{ and } y = \ell d \\ &=& (k - s\ell)d \end{array}$$

Therefore  $d \mod (x, y)$ . And d | y since it is in condition.

**Lemma 2:** If d|y and  $d| \mod (x, y)$  then d|y and d|x. **Proof...:** Similar. Try this at home.

**GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)). **Proof:** *x* and *y* have **same** set of common divisors as *x* and mod (x, y) by Lemma 1 and 2. Same common divisors  $\implies$  largest is the same. ⊡ish.

**GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).

#### **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)?

#### **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7

#### **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0

#### **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)?

#### **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

### **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y)))) ***
```

### **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y)))) ***
```

**Theorem:** (euclid x y) = gcd(x, y) if  $x \ge y$ .

### **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y)))) ***
```

**Theorem:** (euclid x y) = gcd(x, y) if  $x \ge y$ .

Proof: Use Strong Induction.

### **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y)))) ***
```

**Theorem:** (euclid x y) = gcd(x, y) if  $x \ge y$ .

**Proof:** Use Strong Induction. **Base Case:** y = 0, "*x* divides *y* and *x*"

### **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y)))) ***
```

**Theorem:** (euclid x y) = gcd(x, y) if  $x \ge y$ .

**Proof:** Use Strong Induction. **Base Case:** y = 0, "*x* divides *y* and *x*"  $\implies$  "*x* is common divisor and clearly largest."

### **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y)))) ***
```

**Theorem:** (euclid x y) = gcd(x, y) if  $x \ge y$ .

Proof: Use Strong Induction.Base Case: y = 0, "x divides y and x" $\implies$  "x is common divisor and clearly largest."Induction Step: $mod(x, y) < y \le x$  when  $x \ge y$ 

### **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y)))) ***
```

**Theorem:** (euclid x y) = gcd(x, y) if  $x \ge y$ .

**Proof:** Use Strong Induction. **Base Case:** y = 0, "*x* divides *y* and *x*"  $\implies$  "*x* is common divisor and clearly largest." **Induction Step:** mod  $(x, y) < y \le x$  when  $x \ge y$ call in line (\*\*\*) meets conditions plus arguments "smaller"

### **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y)))) ***
```

**Theorem:** (euclid x y) = gcd(x, y) if  $x \ge y$ .

**Proof:** Use Strong Induction. **Base Case:** y = 0, "*x* divides *y* and *x*"  $\implies$  "*x* is common divisor and clearly largest." **Induction Step:** mod  $(x, y) < y \le x$  when  $x \ge y$ call in line (\*\*\*) meets conditions plus arguments "smaller"

and by strong induction hypothesis

# Euclid's algorithm.

#### **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y)))) ***
```

**Theorem:** (euclid x y) = gcd(x, y) if  $x \ge y$ .

**Proof:** Use Strong Induction. **Base Case:** y = 0, "*x* divides *y* and *x*"  $\implies$  "*x* is common divisor and clearly largest." **Induction Step:** mod  $(x, y) < y \le x$  when  $x \ge y$ call in line (\*\*\*) meets conditions plus arguments "smaller"

and by strong induction hypothesis computes gcd(y, mod(x, y))

# Euclid's algorithm.

#### **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y)))) ***
```

**Theorem:** (euclid x y) = gcd(x, y) if  $x \ge y$ .

**Proof:** Use Strong Induction. **Base Case:** y = 0, "*x* divides *y* and *x*"  $\implies$  "*x* is common divisor and clearly largest." **Induction Step:** mod  $(x, y) < y \le x$  when  $x \ge y$ call in line (\*\*\*) meets conditions plus arguments "smaller" and by strong induction hypothesis computes gcd(*y*, mod (x, y)) which is gcd(*x*, *y*) by GCD Mod Corollary.

# Euclid's algorithm.

#### **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)).

Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x

```
(define (euclid x y)
  (if (= y 0)
        x
        (euclid y (mod x y)))) ***
```

**Theorem:** (euclid x y) = gcd(x, y) if  $x \ge y$ .

**Proof:** Use Strong Induction. **Base Case:** y = 0, "*x* divides *y* and *x*"  $\implies$  "*x* is common divisor and clearly largest." **Induction Step:** mod  $(x, y) < y \le x$  when  $x \ge y$ call in line (\*\*\*) meets conditions plus arguments "smaller" and by strong induction hypothesis computes gcd(*y*, mod (x, y)) which is gcd(*x*, *y*) by GCD Mod Corollary.

Modular Arithmetic:  $x \equiv y \pmod{N}$  if x = y + kN for some integer k.

Modular Arithmetic:  $x \equiv y \pmod{N}$  if x = y + kN for some integer k.

For  $a \equiv b \pmod{N}$ , and  $c \equiv d \pmod{N}$ ,  $ac = bd \pmod{N}$  and  $a+b=c+d \pmod{N}$ .

Modular Arithmetic:  $x \equiv y \pmod{N}$  if x = y + kN for some integer k.

For 
$$a \equiv b \pmod{N}$$
, and  $c \equiv d \pmod{N}$ ,  
 $ac = bd \pmod{N}$  and  $a+b = c+d \pmod{N}$ .  
Division?

Modular Arithmetic:  $x \equiv y \pmod{N}$  if x = y + kN for some integer k.

For 
$$a \equiv b \pmod{N}$$
, and  $c \equiv d \pmod{N}$ ,  
 $ac = bd \pmod{N}$  and  $a+b = c+d \pmod{N}$ .

Division? Multiply by multiplicative inverse.

Modular Arithmetic:  $x \equiv y \pmod{N}$  if x = y + kN for some integer k.

For 
$$a \equiv b \pmod{N}$$
, and  $c \equiv d \pmod{N}$ ,  
 $ac = bd \pmod{N}$  and  $a+b=c+d \pmod{N}$ .

Division? Multiply by multiplicative inverse.  $a \pmod{N}$  has multiplicative inverse,  $a^{-1} \pmod{N}$ .

Modular Arithmetic:  $x \equiv y \pmod{N}$  if x = y + kN for some integer k.

For 
$$a \equiv b \pmod{N}$$
, and  $c \equiv d \pmod{N}$ ,  
 $ac = bd \pmod{N}$  and  $a+b=c+d \pmod{N}$ .

Division? Multiply by multiplicative inverse.  $a \pmod{N}$  has multiplicative inverse,  $a^{-1} \pmod{N}$ . If and only if gcd(a, N) = 1.

Modular Arithmetic:  $x \equiv y \pmod{N}$  if x = y + kN for some integer k.

For 
$$a \equiv b \pmod{N}$$
, and  $c \equiv d \pmod{N}$ ,  
 $ac = bd \pmod{N}$  and  $a+b=c+d \pmod{N}$ .

Division? Multiply by multiplicative inverse.  $a \pmod{N}$  has multiplicative inverse,  $a^{-1} \pmod{N}$ . If and only if gcd(a, N) = 1.

Why?

Modular Arithmetic:  $x \equiv y \pmod{N}$  if x = y + kN for some integer k.

For 
$$a \equiv b \pmod{N}$$
, and  $c \equiv d \pmod{N}$ ,  
 $ac = bd \pmod{N}$  and  $a+b=c+d \pmod{N}$ .

Division? Multiply by multiplicative inverse.  $a \pmod{N}$  has multiplicative inverse,  $a^{-1} \pmod{N}$ . If and only if gcd(a, N) = 1.

Why? If:  $f(x) = ax \pmod{N}$  is a bijection on  $\{1, \dots, N-1\}$ .

Modular Arithmetic:  $x \equiv y \pmod{N}$  if x = y + kN for some integer k.

For 
$$a \equiv b \pmod{N}$$
, and  $c \equiv d \pmod{N}$ ,  
 $ac = bd \pmod{N}$  and  $a+b=c+d \pmod{N}$ .

Division? Multiply by multiplicative inverse.  $a \pmod{N}$  has multiplicative inverse,  $a^{-1} \pmod{N}$ . If and only if gcd(a, N) = 1.

Why? If:  $f(x) = ax \pmod{N}$  is a bijection on  $\{1, \dots, N-1\}$ .  $ax - ay = 0 \pmod{N} \implies a(x - y)$  is a multiple of N.

Modular Arithmetic:  $x \equiv y \pmod{N}$  if x = y + kN for some integer k.

For 
$$a \equiv b \pmod{N}$$
, and  $c \equiv d \pmod{N}$ ,  
 $ac = bd \pmod{N}$  and  $a+b=c+d \pmod{N}$ .

Division? Multiply by multiplicative inverse.  $a \pmod{N}$  has multiplicative inverse,  $a^{-1} \pmod{N}$ . If and only if gcd(a, N) = 1.

Why? If:  $f(x) = ax \pmod{N}$  is a bijection on  $\{1, \dots, N-1\}$ .  $ax - ay = 0 \pmod{N} \implies a(x - y)$  is a multiple of N. If gcd(a, N) = 1,

Modular Arithmetic:  $x \equiv y \pmod{N}$  if x = y + kN for some integer k.

For 
$$a \equiv b \pmod{N}$$
, and  $c \equiv d \pmod{N}$ ,  
 $ac = bd \pmod{N}$  and  $a+b=c+d \pmod{N}$ .

Division? Multiply by multiplicative inverse.  $a \pmod{N}$  has multiplicative inverse,  $a^{-1} \pmod{N}$ . If and only if gcd(a, N) = 1.

Why? If: 
$$f(x) = ax \pmod{N}$$
 is a bijection on  $\{1, ..., N-1\}$ .  
 $ax - ay = 0 \pmod{N} \implies a(x - y)$  is a multiple of  $N$ .  
If  $gcd(a, N) = 1$ ,  
then  $(x - y)$  must contain all primes in prime factorization of  $N$ ,

Modular Arithmetic:  $x \equiv y \pmod{N}$  if x = y + kN for some integer k.

For 
$$a \equiv b \pmod{N}$$
, and  $c \equiv d \pmod{N}$ ,  
 $ac = bd \pmod{N}$  and  $a+b=c+d \pmod{N}$ 

Division? Multiply by multiplicative inverse.  $a \pmod{N}$  has multiplicative inverse,  $a^{-1} \pmod{N}$ . If and only if gcd(a, N) = 1.

Why? If: 
$$f(x) = ax \pmod{N}$$
 is a bijection on  $\{1, ..., N-1\}$ .  
 $ax - ay = 0 \pmod{N} \implies a(x - y)$  is a multiple of  $N$ .  
If  $gcd(a, N) = 1$ ,  
then  $(x - y)$  must contain all primes in prime factorization of  $N$ ,  
and is therefore be bigger than  $N$ .

34/34

Modular Arithmetic:  $x \equiv y \pmod{N}$  if x = y + kN for some integer k.

For 
$$a \equiv b \pmod{N}$$
, and  $c \equiv d \pmod{N}$ ,  
 $ac = bd \pmod{N}$  and  $a+b=c+d \pmod{N}$ 

Division? Multiply by multiplicative inverse.  $a \pmod{N}$  has multiplicative inverse,  $a^{-1} \pmod{N}$ . If and only if gcd(a, N) = 1.

Why? If: 
$$f(x) = ax \pmod{N}$$
 is a bijection on  $\{1, ..., N-1\}$ .  
 $ax - ay = 0 \pmod{N} \implies a(x - y)$  is a multiple of *N*.  
If  $gcd(a, N) = 1$ ,  
then  $(x - y)$  must contain all primes in prime factorization of *N*,  
and is therefore be bigger than *N*.

Only if: For a = xd and N = yd,

Modular Arithmetic:  $x \equiv y \pmod{N}$  if x = y + kN for some integer k.

For 
$$a \equiv b \pmod{N}$$
, and  $c \equiv d \pmod{N}$ ,  
 $ac = bd \pmod{N}$  and  $a+b=c+d \pmod{N}$ 

Division? Multiply by multiplicative inverse.  $a \pmod{N}$  has multiplicative inverse,  $a^{-1} \pmod{N}$ . If and only if gcd(a, N) = 1.

Why? If: 
$$f(x) = ax \pmod{N}$$
 is a bijection on  $\{1, ..., N-1\}$ .  
 $ax - ay = 0 \pmod{N} \implies a(x - y)$  is a multiple of  $N$ .  
If  $gcd(a, N) = 1$ ,  
then  $(x - y)$  must contain all primes in prime factorization of  $N$ ,  
and is therefore be bigger than  $N$ .  
Only if: For  $a = xd$  and  $N = yd$ ,

any ma + kN = d(mx - ky) or is a multiple of d, and is not 1.

Modular Arithmetic:  $x \equiv y \pmod{N}$  if x = y + kN for some integer k.

For 
$$a \equiv b \pmod{N}$$
, and  $c \equiv d \pmod{N}$ ,  
 $ac = bd \pmod{N}$  and  $a+b=c+d \pmod{N}$ 

Division? Multiply by multiplicative inverse.  $a \pmod{N}$  has multiplicative inverse,  $a^{-1} \pmod{N}$ . If and only if gcd(a, N) = 1.

Why? If: 
$$f(x) = ax \pmod{N}$$
 is a bijection on  $\{1, ..., N-1\}$ .  
 $ax - ay = 0 \pmod{N} \implies a(x - y)$  is a multiple of  $N$ .  
If  $gcd(a, N) = 1$ ,  
then  $(x - y)$  must contain all primes in prime factorization of  $N$ ,  
and is therefore be bigger than  $N$ .

Only if: For a = xd and N = yd,

any ma + kN = d(mx - ky) or is a multiple of d, and is not 1.

Euclid's Alg:  $gcd(x, y) = gcd(y \mod x, x)$ 

Modular Arithmetic:  $x \equiv y \pmod{N}$  if x = y + kN for some integer k.

For 
$$a \equiv b \pmod{N}$$
, and  $c \equiv d \pmod{N}$ ,  
 $ac = bd \pmod{N}$  and  $a+b=c+d \pmod{N}$ 

Division? Multiply by multiplicative inverse.  $a \pmod{N}$  has multiplicative inverse,  $a^{-1} \pmod{N}$ . If and only if gcd(a, N) = 1.

Why? If: 
$$f(x) = ax \pmod{N}$$
 is a bijection on  $\{1, ..., N-1\}$ .  
 $ax - ay = 0 \pmod{N} \implies a(x - y)$  is a multiple of  $N$ .  
If  $gcd(a, N) = 1$ ,  
then  $(x - y)$  must contain all primes in prime factorization of  $N$ ,

and is therefore be bigger than *N*.

Only if: For a = xd and N = yd,

any ma + kN = d(mx - ky) or is a multiple of d, and is not 1.

```
Euclid's Alg: gcd(x,y) = gcd(y \mod x,x)
Fast cuz value drops by a factor of two every two recursive calls.
```

Modular Arithmetic:  $x \equiv y \pmod{N}$  if x = y + kN for some integer k.

For 
$$a \equiv b \pmod{N}$$
, and  $c \equiv d \pmod{N}$ ,  
 $ac = bd \pmod{N}$  and  $a+b=c+d \pmod{N}$ 

Division? Multiply by multiplicative inverse.  $a \pmod{N}$  has multiplicative inverse,  $a^{-1} \pmod{N}$ . If and only if gcd(a, N) = 1.

Why? If: 
$$f(x) = ax \pmod{N}$$
 is a bijection on  $\{1, ..., N-1\}$ .  
 $ax - ay = 0 \pmod{N} \implies a(x - y)$  is a multiple of *N*.  
If  $gcd(a, N) = 1$ ,  
then  $(x - y)$  must contain all primes in prime factorization of *N*,

and is therefore be bigger than *N*.

Only if: For 
$$a = xd$$
 and  $N = yd$ ,

any ma + kN = d(mx - ky) or is a multiple of d, and is not 1.

Euclid's Alg: 
$$gcd(x,y) = gcd(y \mod x,x)$$
  
Fast cuz value drops by a factor of two every two recursive calls.

Know if there is an inverse, but how do we find it?

Modular Arithmetic:  $x \equiv y \pmod{N}$  if x = y + kN for some integer k.

For 
$$a \equiv b \pmod{N}$$
, and  $c \equiv d \pmod{N}$ ,  
 $ac = bd \pmod{N}$  and  $a+b=c+d \pmod{N}$ 

Division? Multiply by multiplicative inverse.  $a \pmod{N}$  has multiplicative inverse,  $a^{-1} \pmod{N}$ . If and only if gcd(a, N) = 1.

Why? If: 
$$f(x) = ax \pmod{N}$$
 is a bijection on  $\{1, ..., N-1\}$ .  
 $ax - ay = 0 \pmod{N} \implies a(x - y)$  is a multiple of *N*.  
If  $gcd(a, N) = 1$ ,  
then  $(x - y)$  must contain all primes in prime factorization of *N*,

and is therefore be bigger than N.

Only if: For 
$$a = xd$$
 and  $N = yd$ ,

any ma + kN = d(mx - ky) or is a multiple of d, and is not 1.

Euclid's Alg: 
$$gcd(x,y) = gcd(y \mod x,x)$$
  
Fast cuz value drops by a factor of two every two recursive calls.

Know if there is an inverse, but how do we find it? On Tuesday!