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1. Isoperimetric inequality for hypercube.

2. Modular Arithmetic.
Clock Math!!!

3. Inverses for Modular Arithmetic: Greatest Common Divisor.
Division!!!

4. Euclid’s GCD Algorithm.
A little tricky here!
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The sphere minimizes surface area to volume.
Surface Area: 4zr?, Volume: $rS.
Ratio: 1/3r=0(V~1/3).

Graphical Analog: Cut into two pieces and find ratio of edges/vertices
on small side.

Tree: ©(1/|V]).
Hypercube: ©(1).
Surface Area is roughly at least the volume!
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Hypercube: Can’t cut me!

Thm: Any subset S of the hypercube where |S| <|V|/2 has > |S]
edges connectingitto V- S; |[ENSx (V—-S)| > |S|

Terminology:
(S,V—-_S)iscut.
(ENSx(V—-29)) - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges
is at least the size of the small side.
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Induction Step. Case 2.

Thm: For any cut (S, V — S) in the hypercube, the number of cut
edges is at least the size of the small side, |S|.
Proof: Induction Step. Case 2.
1So| = [Vol/2.
Recall Case 1: |Spl,|Si| < |V|/2
|S1] < | Vi]/2 since | S| < |V]/2.
= >|S;| edges cut in E;.
[Sol = [Vol/2 = [Vo— S| < |Vo|/2
= >| Vo] —|So| edges cut in Ep.
N Edges in Ex connect corresponding nodes.
= =|S| —|S1| edges cut in E.

Total edges cut:
> S|+ Vol —[So| +[So| — [S1] = | Vol
Vol =VI/2>S]. O
Also, case 3 where |Sq| > | V|/2 is symmetric.
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Hypercube proof: poll

Hypercube has large cuts proof uses these ideas:

(A) If cuts are same size on two sides it works by induction.
) Uses the fact that it is planar.

) Recursive definition of hypercube.

) If different size, can count edges between to subcubes.
)

(B

(C
(D
(E) Applies Euler’s formula.
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Hypercube has large cuts proof uses these ideas:

(A) If cuts are same size on two sides it works by induction.
) Uses the fact that it is planar.

C) Recursive definition of hypercube.

D) If different size, can count edges between to subcubes.

E) Applies Euler’s formula.

)

(B
(
(
(
(A),(D), and (E).
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Hypercubes and Boolean Functions.

The cuts in the hypercubes are exactly the transitions from 0 sets to 1
set on boolean functions on {0,1}".
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The cuts in the hypercubes are exactly the transitions from 0 sets to 1
set on boolean functions on {0,1}".

Central area of study in computer science!
Yes/No Computer Programs = Boolean function on {0,1}"
Central object of study.
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Modular Arithmetic.

Applications: cryptography, error correction.
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Key ideas for modular arithmetic.

Theorem: If d|x and d|y, then d|(y — x).
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Key ideas for modular arithmetic.

Theorem: If d|x and d|y, then d|(y — x).

Proof:
x=ad, y=bd,
(x—y)=(ad—bd)=d(a—b) = d|(x—y).
O
Theorem: Every number n > 2 can be represented as a product of
primes.
Proof: Either prime, or n= a x b, and use strong induction. O

(Uniqueness? Later.)
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Poll

What did we use in our proofs of key ideas?

Distributive Property of multiplication over addition.
Euler’s formula.

The definition of a prime number.

Euclid’s Lemma.

—_— - —

(A
(B
(C
(D
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Poll

What did we use in our proofs of key ideas?

A) Distributive Property of multiplication over addition.
B) Euler’s formula.

C) The definition of a prime number.

D) Euclid’s Lemma.

)

(
(
(
(
(A) and (C)
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Next Up.

Modular Arithmetic.
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Clock Math

If it is 1:00 now.
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What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!
Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 =12x8+5.
5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1,...,11}
(Almost remainder, except for 12 and 0 are equivalent.)
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“Reduce” at any time in calculation!
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But probably won’t take off points, still hard for us to read.
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“Common factor of 4" —-
8k —12¢ is a multiple of four for any ¢ and k —-
8k #£1 (mod 12) for any k.
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Poll

Mark true statements.

(A) Mutliplicative inverse of 2 mod 5 is 3 mod 5.

(B) The multiplicative inverse of ((n—1) (mod n)=((n—1) (mod n)).
(C) Multiplicative inverse of 2 mod 5 is 0.5.

(D) Multiplicative inverse of 4 = —1 (mod 5).

(E) (—1)x(—1) = 1. Woohoo.

(F) Multiplicative inverse of 4 mod 5 is 4 mod 5.
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(A) Mutliplicative inverse of 2 mod 5 is 3 mod 5.

) The multiplicative inverse of ((n—1) (mod n) = ((n—1) (mod n)).
) Multiplicative inverse of 2 mod 5 is 0.5.

) Multiplicative inverse of 4 = —1 (mod 5).

) (=1)x(—1) = 1. Woohoo.

) Multiplicative inverse of 4 mod 5 is 4 mod 5.

(B
(G
(D
(E
(F
(

C) is false. 0.5 has no meaning in arithmetic modulo 5.
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Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x, m), is 1, then x has a
multiplicative inverse modulo m.

23/34



Greatest Common Divisor and Inverses.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a
multiplicative inverse modulo m.

Proof —:

Claim: The set S = {0x,1x,...,(m—1)x} contains

y =1 mod m if all distinct modulo m.

23/34



Greatest Common Divisor and Inverses.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a
multiplicative inverse modulo m.

Proof —:

Claim: The set S = {0x,1x,...,(m—1)x} contains

y =1 mod m if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes
modulo m.

23/34



Greatest Common Divisor and Inverses.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a
multiplicative inverse modulo m.

Proof —:

Claim: The set S={0x,1x,...,(m—1)x} contains

y =1 mod mif all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes

modulo m.
— One must correspond to 1 modulo m.

23/34



Greatest Common Divisor and Inverses.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a
multiplicative inverse modulo m.

Proof —:

Claim: The set S={0x,1x,...,(m—1)x} contains

y =1 mod mif all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes

modulo m.
— One must correspond to 1 modulo m. Inverse Exists!

23/34



Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x, m), is 1, then x has a
multiplicative inverse modulo m.
Proof —:
Claim: The set S = {0x,1x,...,(m—1)x} contains
y =1 mod m if all distinct modulo m.
Each of m numbers in S correspond to one of m equivalence classes
modulo m.
— One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim:

23/34



Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x, m), is 1, then x has a
multiplicative inverse modulo m.
Proof —:
Claim: The set S = {0x,1x,...,(m—1)x} contains
y =1 mod m if all distinct modulo m.
Each of m numbers in S correspond to one of m equivalence classes
modulo m.
— One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim: If not distinct, then 3a,b € {0,....m—1}, a# b,

23/34



Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x, m), is 1, then x has a
multiplicative inverse modulo m.

Proof —:
Claim: The set S = {0x,1x,...,(m—1)x} contains
y =1 mod m if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes
modulo m.

— One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim: If not distinct, then 3a,b € {0,...,m—1}, a# b, where
(ax =bx (mod m)) = (a—b)x =0 (mod m)

23/34



Greatest Common Divisor and Inverses.

Thm:

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a
multiplicative inverse modulo m.

Proof —:
Claim: The set S = {0x,1x,...,(m—1)x} contains
y =1 mod m if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes
modulo m.

— One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim: If not distinct, then 3a,b € {0,...,m—1}, a# b, where
(ax =bx (mod m)) = (a—b)x =0 (mod m)
Or (a— b)x = km for some integer k.

23/34



Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x, m), is 1, then x has a
multiplicative inverse modulo m.

Proof —:

Claim: The set S={0x,1x,...,(m—1)x} contains

y =1 mod mif all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes

modulo m.
— One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim: If not distinct, then 3a,b € {0,...,m—1}, a# b, where
(ax =bx (mod m)) = (a—b)x =0 (mod m)
Or (a— b)x = km for some integer k.

ged(x,m) =1

23/34



Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x, m), is 1, then x has a
multiplicative inverse modulo m.

Proof —:

Claim: The set S={0x,1x,...,(m—1)x} contains

y =1 mod mif all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes

modulo m.
— One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim: If not distinct, then 3a,b € {0,...,m—1}, a# b, where
(ax =bx (mod m)) = (a—b)x =0 (mod m)

Or (a— b)x = km for some integer k.

ged(x,m)=1

= Prime factorization of m and x do not contain common primes.

23/34



Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x, m), is 1, then x has a
multiplicative inverse modulo m.

Proof —:
Claim: The set S = {0x,1x,...,(m—1)x} contains
y =1 mod m if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes
modulo m.
— One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim: If not distinct, then 3a,b € {0,...,m—1}, a# b, where
(ax =bx (mod m)) = (a—b)x =0 (mod m)

Or (a— b)x = km for some integer k.

ged(x,m)=1

= Prime factorization of m and x do not contain common primes.

— (a— b) factorization contains all primes in m’s factorization.

23/34



Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x, m), is 1, then x has a
multiplicative inverse modulo m.

Proof —:
Claim: The set S = {0x,1x,...,(m—1)x} contains
y =1 mod m if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes
modulo m.
— One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim: If not distinct, then 3a,b € {0,...,m—1}, a# b, where
(ax =bx (mod m)) = (a—b)x =0 (mod m)

Or (a— b)x = km for some integer k.

ged(x,m)=1

= Prime factorization of m and x do not contain common primes.

— (a— b) factorization contains all primes in m’s factorization.
So (a— b) has to be multiple of m.

23/34



Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x, m), is 1, then x has a
multiplicative inverse modulo m.

Proof —:
Claim: The set S = {0x,1x,...,(m—1)x} contains
y =1 mod m if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes
modulo m.
— One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim: If not distinct, then 3a,b € {0,...,m—1}, a# b, where
(ax =bx (mod m)) = (a—b)x =0 (mod m)
Or (a— b)x = km for some integer k.

ged(x,m)=1
= Prime factorization of m and x do not contain common primes.
— (a— b) factorization contains all primes in m’s factorization.
So (a— b) has to be multiple of m.
= (a—b)>m.

23/34



Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x, m), is 1, then x has a
multiplicative inverse modulo m.

Proof —:
Claim: The set S = {0x,1x,...,(m—1)x} contains
y =1 mod m if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes
modulo m.
— One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim: If not distinct, then 3a,b € {0,...,m—1}, a# b, where
(ax =bx (mod m)) = (a—b)x =0 (mod m)
Or (a— b)x = km for some integer k.

ged(x,m)=1
= Prime factorization of m and x do not contain common primes.
— (a— b) factorization contains all primes in m’s factorization.
So (a— b) has to be multiple of m.
= (a—b)>m. Buta,be{0,..m-1}.

23/34



Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x, m), is 1, then x has a
multiplicative inverse modulo m.

Proof —:
Claim: The set S = {0x,1x,...,(m—1)x} contains
y =1 mod m if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes
modulo m.
— One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim: If not distinct, then 3a,b € {0,...,m—1}, a# b, where
(ax =bx (mod m)) = (a—b)x =0 (mod m)
Or (a— b)x = km for some integer k.

ged(x,m)=1
= Prime factorization of m and x do not contain common primes.
— (a— b) factorization contains all primes in m’s factorization.
So (a— b) has to be multiple of m.
= (a—b)>m. Butabe {0,..m—1}. Contradiction.

23/34



Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, gcd(x, m), is 1, then x has a
multiplicative inverse modulo m.

Proof —:
Claim: The set S = {0x,1x,...,(m—1)x} contains
y =1 mod m if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes
modulo m.
— One must correspond to 1 modulo m. Inverse Exists!

Proof of Claim: If not distinct, then 3a,b € {0,...,m—1}, a# b, where
(ax =bx (mod m)) = (a—b)x =0 (mod m)
Or (a— b)x = km for some integer k.

ged(x,m)=1
= Prime factorization of m and x do not contain common primes.
— (a— b) factorization contains all primes in m’s factorization.
So (a— b) has to be multiple of m.
= (a—b)>m. Butabe {0,..m—1}. Contradiction. O

23/34



Proof review. Consequence.
Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.
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