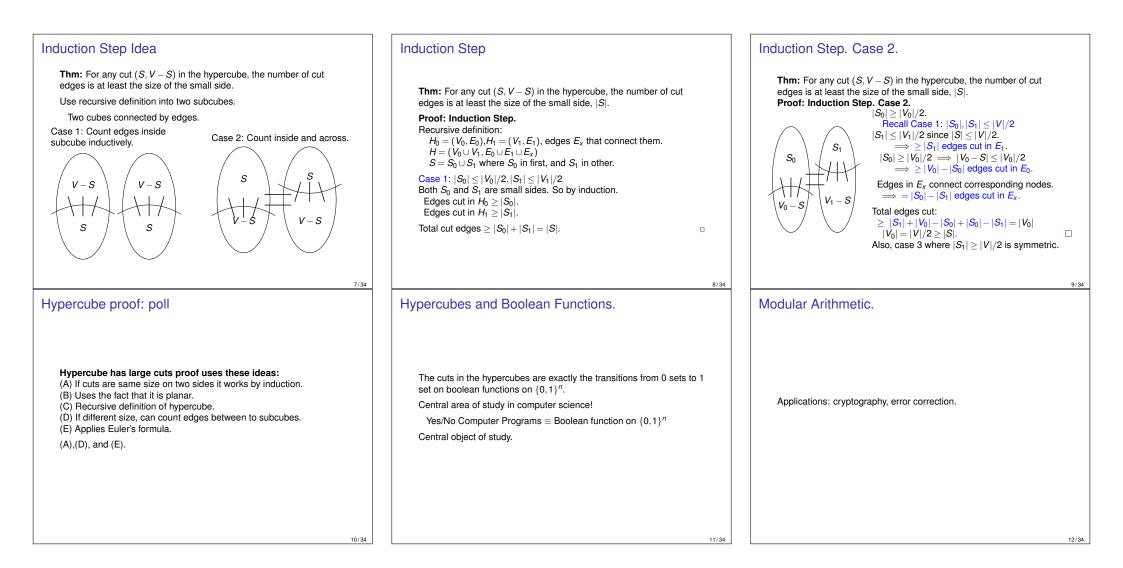
Lecture 7. Outline.	Isoperimetry.	Recursive Definition.
 Isoperimetric inequality for hypercube. Modular Arithmetic. Clock Math!!! Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!! Euclid's GCD Algorithm. A little tricky here! 	For 3-space: The sphere minimizes surface area to volume. Surface Area: $4\pi r^2$, Volume: $\frac{4}{3}\pi r^3$. Ratio: $1/3r = \Theta(V^{-1/3})$. Graphical Analog: Cut into two pieces and find ratio of edges/vertices on small side. Tree: $\Theta(1/ V)$. Hypercube: $\Theta(1)$. Surface Area is roughly at least the volume!	A 0-dimensional hypercube is a node labelled with the empty string of bits. An <i>n</i> -dimensional hypercube consists of a 0-subcube (1-subcube) which is a n – 1-dimensional hypercube with nodes labelled $0x$ (1 x) with the additional edges (0 x , 1 x). (A) Lower left forward node name is 0000 (B) Lower left back node name is 0001 (C) Upper right forward node is 1011 (D) Upper right back node name is 1111
1/34	2/34	3/34
Hypercube: Can't cut me!	Cuts in graphs.	Proof of Large Cuts.
Thm: Any subset <i>S</i> of the hypercube where $ S \le V /2$ has $\ge S $ edges connecting it to $V - S$; $ E \cap S \times (V - S) \ge S $ Terminology: (S, V - S) is cut. $(E \cap S \times (V - S))$ - cut edges. Restatement: for any cut in the hypercube, the number of cut edges is at least the size of the small side.	f_{x}	Thm: For any cut $(S, V - S)$ in the hypercube, the number of cut edges is at least the size of the small side. Proof: Base Case: $n = 1 V = \{0, 1\}$. $S = \{0\}$ has one edge leaving. $ S = \phi$ has 0.



Key ideas for modular arithmetic.	Poll	Next Up.
Theorem: If $d x$ and $d y$, then $d (y - x)$. Proof: x = ad, y = bd, $(x - y) = (ad - bd) = d(a - b) \implies d (x - y).$ Theorem: Every number $n \ge 2$ can be represented as a product of primes. Proof: Either prime, or $n = a \times b$, and use strong induction. (Uniqueness? Later.)	 What did we use in our proofs of key ideas? (A) Distributive Property of multiplication over addition. (B) Euler's formula. (C) The definition of a prime number. (D) Euclid's Lemma. (A) and (C) 	Modular Arithmetic.
13/34 Clock Math	Day of the week.	Years and years
If it is 1:00 now. What time is it in 2 hours? 3:00! What time is it in 5 hours? 6:00! What time is it in 15 hours? 16:00! Actually 4:00. 16 is the "same as 4" with respect to a 12 hour clock system. Clock time equivalent up to to addition/subtraction of 12. What time is it in 100 hours? 101:00! or 5:00. $101 = 12 \times 8 + 5$. 5 is the same as 101 for a 12 hour clock system. Clock time equivalent up to addition of any integer multiple of 12. Custom is only to use the representative in {12, 1,, 11} (Almost remainder, except for 12 and 0 are equivalent.)	This is Thursday is September 16, 2021. What day is it a year from then? on September 16, 2022? Number days. 0 for Sunday, 1 for Monday,, 6 for Saturday. Today: day 4. 5 days from then. day 9 or day 2 or Tuesday. 25 days from then. day 29 or day 1. $29 = (7)4 + 1$ two days are equivalent up to addition/subtraction of multiple of 7. 11 days from then is day 1 which is Monday! What day is it a year from then? Next year is not a leap year. So 365 days from then. Day 4+365 or day 369. Smallest representation: subtract 7 until smaller than 7. divide and get remainder. 369/7 leaves quotient of 52 and remainder 5. $369 = 7(52) + 5$ or September 16, 2022 is a Friday.	80 years? 20 leap years. 366×20 days 60 regular years. 365×60 days Today is day 4. It is day $4+366 \times 20+365 \times 60$. Equivalent to? Hmm. What is remainder of 366 when dividing by 7? $52 \times 7+2$. What is remainder of 365 when dividing by 7? 1 Today is day 4. Get Day: $4+2 \times 20+1 \times 60 = 104$ Remainder when dividing by 7? $104 = 14 \times 7+6$. Or February 11, 2101 is Saturday! Further Simplify Calculation: 20 has remainder 6 when divided by 7. 60 has remainder 4 when divided by 7. Get Day: $2+2 \times 6+1 \times 4=18$. Or Day 6. September 16, 2101 is Saturday. "Reduce" at any time in calculation!

Modular Arithmetic: refresher.

x is congruent to *y* modulo *m* or " $x \equiv y \pmod{m}$ " if and only if (x - y) is divisible by *m*. ...or *x* and *y* have the same remainder w.r.t. *m*. ...or x = y + km for some integer *k*.

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

or " $a \equiv c \pmod{m}$ and $b \equiv d \pmod{m}$ $\implies a+b \equiv c+d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$ "

Proof: If $a \equiv c \pmod{m}$, then a = c + km for some integer k. If $b \equiv d \pmod{m}$, then b = d + jm for some integer j. Therefore, a+b=c+d+(k+j)m and since k+j is integer. $\implies a+b \equiv c+d \pmod{m}$.

Can calculate with representative in $\{0, \ldots, m-1\}$.

Poll

Mark true statements.

(A) Multiplicative inverse of 2 mod 5 is 3 mod 5. (B) The multiplicative inverse of $((n-1) \pmod{n} = ((n-1) \pmod{n})$. (C) Multiplicative inverse of 2 mod 5 is 0.5. (D) Multiplicative inverse of $4 = -1 \pmod{5}$. (E) (-1)x(-1) = 1. Woohoo. (F) Multiplicative inverse of 4 mod 5 is 4 mod 5.

(C) is false. 0.5 has no meaning in arithmetic modulo 5.

Notation

 $x \pmod{m}$ or mod(x,m)- remainder of x divided by m in $\{0, \ldots, m-1\}$.

 $mod(x,m) = x - \lfloor \frac{x}{m} \rfloor m$

 $\lfloor \frac{x}{m} \rfloor$ is quotient.

 $mod (29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 = 29 - (2) \times 12 = \texttt{X} = 5$

Work in this system. $a \equiv b \pmod{m}$. Says two integers *a* and *b* are equivalent modulo *m*.

Modulus is m

 $6\equiv 3+3\equiv 3+10 \ (mod \ 7).$

 $6 = 3 + 3 = 3 + 10 \pmod{7}$.

Generally, not 6 (mod 7) = 13 (mod 7). But probably won't take off points, still hard for us to read.

Greatest Common Divisor and Inverses.

Thm:

19/34

22/34

If greatest common divisor of x and m, gcd(x, m), is 1, then x has a multiplicative inverse modulo m.

Proof \Longrightarrow :

Claim: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Each of *m* numbers in *S* correspond to one of *m* equivalence classes modulo *m*.

 \implies One must correspond to 1 modulo *m*. Inverse Exists!

Proof of Claim: If not distinct, then $\exists a, b \in \{0, \dots, m-1\}$, $a \neq b$, where $(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$ Or (a-b)x = km for some integer k.

gcd(x,m) = 1

⇒ Prime factorization of *m* and *x* do not contain common primes. ⇒ (a-b) factorization contains all primes in *m*'s factorization.

So (a - b) has to be multiple of *m*.

 \implies $(a-b) \ge m$. But $a, b \in \{0, ..., m-1\}$. Contradiction.

23/34

20/34

Inverses and Factors.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right) \cdot 3 \implies x = \frac{3}{2}.$$

Multiplicative inverse of x is y where xy = 1; 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ is y with $xy = 1 \pmod{m}$.

For 4 modulo 7 inverse is 2: $2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}$.

Can solve $4x = 5 \pmod{7}$. $x = 3 \pmod{2}::5 \operatorname{Check}/4(3) = 12 = 5 \pmod{7}$. For 8 Hotulo $42 \operatorname{Check}/4(3) = 12 = 5 \pmod{7}$. For 8 Hotulo $42 \operatorname{Check}/4(3) = 12 = 5 \pmod{7}$. $x = 3 \pmod{7}$. Check $42 \operatorname{Check}/4(3) = 12 \operatorname{Check}/$

Proof review. Consequence.

Thm: If gcd(x, m) = 1, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, ..., (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo *m*.

```
For x = 4 and m = 6. All products of 4...

S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}

reducing (mod 6)

S = \{0, 4, 2, 0, 4, 2\}

Not distinct. Common factor 2. Can't be 1. No inverse.
```

For x = 5 and m = 6. $S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$ All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6). (Hmm. What normal number is it own multiplicative inverse?) 1 -1.

```
5x = 3 \pmod{6} What is x? Multiply both sides by 5.
x = 15 = 3 (mod 6)
```

```
4x = 3 \pmod{6} No solutions. Can't get an odd.
4x = 2 \pmod{6} Two solutions! x = 2.5 \pmod{6}
```

Very different for elements with inverses.

24/34

21/34

П

Proof Review 2: Bijections.	Poll	Only if
If $gcd(x,m) = 1$. Then the function $f(a) = xa \mod m$ is a bijection. Onto the sizes of the domain and co-domain are the same. x = 3, m = 4. $f(1) = 3 (1) = 3 \pmod{4}, f(2) = 6 = 2 \pmod{4}, f(3) = 1 \pmod{3}$. Oh yeah. $f(0) = 0$. Bijection \equiv unique pre-image and same size. All the images are distinct. \implies unique pre-image for any image. x = 2, m = 4. f(1) = 2, f(2) = 0, f(3) = 2 Oh yeah. $f(0) = 0$. Not a bijection.	Which is bijection? (A) $f(x) = x$ for domain and range being \mathbb{R} (B) $f(x) = ax \pmod{(n)}$ for $x \in \{0,, n-1\}$ and $gcd(a, n) = 2$ (C) $f(x) = ax \pmod{n}$ for $x \in \{0,, n-1\}$ and $gcd(a, n) = 1$ (B) is not.	Thm: If $gcd(x, m) \neq 1$ then x has no multiplicative inverse modulo m. Assume a is x^{-1} , or $ax = 1 + km$. $x = nd$ and $m = \ell d$ for $d > 1$. Thus, $a(nd) = 1 + k\ell d$ or $d(na - k\ell) = 1$. But $d > 1$ and $n = (na - k\ell) \in \mathbb{Z}$. so $dn \neq 1$ and $dn = 1$. Contradiction.
25/34	26/34	27/34
Finding inverses.	Inverses	Refresh
How to find the inverse? How to find if <i>x</i> has an inverse modulo <i>m</i> ? Find gcd (<i>x</i> , <i>m</i>). Greater than 1? No multiplicative inverse. Equal to 1? Multiplicative inverse. Algorithm: Try all numbers up to <i>x</i> to see if it divides both <i>x</i> and <i>m</i> . Very slow.	Next up. Euclid's Algorithm. Runtime. Euclid's Extended Algorithm.	Does 2 have an inverse mod 8? No. Any multiple of 2 is 2 away from $0 + 8k$ for any $k \in \mathbb{N}$. Does 2 have an inverse mod 9? Yes. 5 $2(5) = 10 = 1 \mod 9$. Does 6 have an inverse mod 9? No. Any multiple of 6 is 3 away from $0 + 9k$ for any $k \in \mathbb{N}$. 3 = gcd(6,9)! x has an inverse modulo <i>m</i> if and only if gcd(x,m) > 1? No. gcd(x,m) = 1? Yes. Now what?: Compute gcd! Compute Inverse modulo <i>m</i> .
28/34	29/34	30/34

Divisibility... **Notation:** *d x* means "*d* divides *x*" or x = kd for some integer k. **Fact:** If d|x and d|y then d|(x+y) and d|(x-y). Is it a fact? Yes? No? **Proof:** d|x and d|y or $x = \ell d$ and y = kd $\Rightarrow x - y = kd - \ell d = (k - \ell)d \Rightarrow d|(x - y)$ 31/34 Modular Arithmetic Lecture in a minute. Modular Arithmetic: $x \equiv y \pmod{N}$ if x = y + kN for some integer k. For $a \equiv b \pmod{N}$, and $c \equiv d \pmod{N}$, $ac = bd \pmod{N}$ and $a + b = c + d \pmod{N}$. Division? Multiply by multiplicative inverse. a (mod N) has multiplicative inverse, $a^{-1} \pmod{N}$. If and only if gcd(a, N) = 1. Why? If: $f(x) = ax \pmod{N}$ is a bijection on $\{1, \dots, N-1\}$. $ax - ay = 0 \pmod{N} \implies a(x - y)$ is a multiple of N. If acd(a, N) = 1. then (x - y) must contain all primes in prime factorization of N. and is therefore be bigger than N. Only if: For a = xd and N = yd, any ma + kN = d(mx - ky) or is a multiple of d, and is not 1. Euclid's Alg: $gcd(x, y) = gcd(y \mod x, x)$ Fast cuz value drops by a factor of two every two recursive calls. Know if there is an inverse, but how do we find it? On Tuesday! 34/34

More divisibility **Notation:** *d*|*x* means "*d* divides *x*" or x = kd for some integer k. **Lemma 1:** If d|x and d|y then d|y and $d| \mod (x, y)$. Proof: $mod(x,y) = x - |x/y| \cdot y$ $= x - [s] \cdot y$ for integer s $= kd - s\ell d$ for integers k, ℓ where x = kd and $y = \ell d$ $= (k - s\ell)d$ Therefore $d \mod (x, y)$. And $d \mid y$ since it is in condition. **Lemma 2:** If d|y and $d| \mod (x, y)$ then d|y and d|x. Proof...: Similar. Try this at home. □ish. **GCD Mod Corollary:** gcd(x, y) = gcd(y, mod(x, y)). **Proof:** *x* and *y* have **same** set of common divisors as *x* and mod(x, y) by Lemma 1 and 2. Same common divisors \implies largest is the same. 32/34

Euclid's algorithm.

GCD Mod Corollary: gcd(x, y) = gcd(y, mod(x, y)). Hey, what's gcd(7,0)? 7 since 7 divides 7 and 7 divides 0 What's gcd(x,0)? x (define (euclid x y) (if (= y 0) Х (euclid y (mod x y)))) *** **Theorem:** (euclid x y) = gcd(x, y) if $x \ge y$. Proof: Use Strong Induction. **Base Case:** y = 0, "x divides y and x" \implies "x is common divisor and clearly largest." **Induction Step:** mod $(x, y) < y \le x$ when $x \ge y$ call in line (***) meets conditions plus arguments "smaller" and by strong induction hypothesis computes gcd(y, mod(x, y))which is gcd(x, y) by GCD Mod Corollary.