
CS70.

Comment: Add 0. Proof that 3|n3−n.

Which are parts of proof?

(A) k3−k = qn for q ∈ N.

(B) 03−0 = 0, 3|0 since 3 = 0(3).

(C) (k +1)3− (k +1) = k3 +2k .

(D) k3 +2k = k(k2 +2).

(E) Add k −k to k3 +2k .

(F) (k3−k)+3k = 3(q+k).

Add (k −k).

1 / 29

CS70.

Comment: Add 0.

Proof that 3|n3−n.

Which are parts of proof?

(A) k3−k = qn for q ∈ N.

(B) 03−0 = 0, 3|0 since 3 = 0(3).

(C) (k +1)3− (k +1) = k3 +2k .

(D) k3 +2k = k(k2 +2).

(E) Add k −k to k3 +2k .

(F) (k3−k)+3k = 3(q+k).

Add (k −k).

1 / 29

CS70.

Comment: Add 0. Proof that 3|n3−n.

Which are parts of proof?

(A) k3−k = qn for q ∈ N.

(B) 03−0 = 0, 3|0 since 3 = 0(3).

(C) (k +1)3− (k +1) = k3 +2k .

(D) k3 +2k = k(k2 +2).

(E) Add k −k to k3 +2k .

(F) (k3−k)+3k = 3(q+k).

Add (k −k).

1 / 29

CS70.

Comment: Add 0. Proof that 3|n3−n.

Which are parts of proof?

(A) k3−k = qn for q ∈ N.

(B) 03−0 = 0, 3|0 since 3 = 0(3).

(C) (k +1)3− (k +1) = k3 +2k .

(D) k3 +2k = k(k2 +2).

(E) Add k −k to k3 +2k .

(F) (k3−k)+3k = 3(q+k).

Add (k −k).

1 / 29

CS70.

Comment: Add 0. Proof that 3|n3−n.

Which are parts of proof?

(A) k3−k = qn for q ∈ N.

(B) 03−0 = 0, 3|0 since 3 = 0(3).

(C) (k +1)3− (k +1) = k3 +2k .

(D) k3 +2k = k(k2 +2).

(E) Add k −k to k3 +2k .

(F) (k3−k)+3k = 3(q+k).

Add (k −k).

1 / 29

CS70

Induction: Some quibbles.

What did you learn in 61A?

Induction and Recursion

Couple of more induction proofs.

Stable Marriage.

2 / 29

CS70

Induction: Some quibbles.

What did you learn in 61A?

Induction and Recursion

Couple of more induction proofs.

Stable Marriage.

2 / 29

CS70

Induction: Some quibbles.

What did you learn in 61A?

Induction and Recursion

Couple of more induction proofs.

Stable Marriage.

2 / 29

CS70

Induction: Some quibbles.

What did you learn in 61A?

Induction and Recursion

Couple of more induction proofs.

Stable Marriage.

2 / 29

CS70

Induction: Some quibbles.

What did you learn in 61A?

Induction and Recursion

Couple of more induction proofs.

Stable Marriage.

2 / 29

Some quibbles.

The induction principle works on the natural numbers.

Proves statements of form: ∀n ∈ N,P(n).

Yes.

What if the statement is only for n ≥ 3?

∀n ∈ N,(n ≥ 3) =⇒ P(n)

Restate as:
∀n ∈ N,Q(n) where Q(n) = “(n ≥ 3) =⇒ P(n)”.

Base Case: typically start at 3.
Since ∀n ∈ N,Q(n) =⇒ Q(n+1) is trivially true before 3.

Can you do induction over other things? Yes.

Any set where any subset of the set has a smallest element.

In some sense, the natural numbers.

3 / 29

Some quibbles.

The induction principle works on the natural numbers.

Proves statements of form: ∀n ∈ N,P(n).

Yes.

What if the statement is only for n ≥ 3?

∀n ∈ N,(n ≥ 3) =⇒ P(n)

Restate as:
∀n ∈ N,Q(n) where Q(n) = “(n ≥ 3) =⇒ P(n)”.

Base Case: typically start at 3.
Since ∀n ∈ N,Q(n) =⇒ Q(n+1) is trivially true before 3.

Can you do induction over other things? Yes.

Any set where any subset of the set has a smallest element.

In some sense, the natural numbers.

3 / 29

Some quibbles.

The induction principle works on the natural numbers.

Proves statements of form: ∀n ∈ N,P(n).

Yes.

What if the statement is only for n ≥ 3?

∀n ∈ N,(n ≥ 3) =⇒ P(n)

Restate as:
∀n ∈ N,Q(n) where Q(n) = “(n ≥ 3) =⇒ P(n)”.

Base Case: typically start at 3.
Since ∀n ∈ N,Q(n) =⇒ Q(n+1) is trivially true before 3.

Can you do induction over other things? Yes.

Any set where any subset of the set has a smallest element.

In some sense, the natural numbers.

3 / 29

Some quibbles.

The induction principle works on the natural numbers.

Proves statements of form: ∀n ∈ N,P(n).

Yes.

What if the statement is only for n ≥ 3?

∀n ∈ N,(n ≥ 3) =⇒ P(n)

Restate as:
∀n ∈ N,Q(n) where Q(n) = “(n ≥ 3) =⇒ P(n)”.

Base Case: typically start at 3.
Since ∀n ∈ N,Q(n) =⇒ Q(n+1) is trivially true before 3.

Can you do induction over other things? Yes.

Any set where any subset of the set has a smallest element.

In some sense, the natural numbers.

3 / 29

Some quibbles.

The induction principle works on the natural numbers.

Proves statements of form: ∀n ∈ N,P(n).

Yes.

What if the statement is only for n ≥ 3?

∀n ∈ N,(n ≥ 3) =⇒ P(n)

Restate as:
∀n ∈ N,Q(n) where Q(n) = “(n ≥ 3) =⇒ P(n)”.

Base Case: typically start at 3.
Since ∀n ∈ N,Q(n) =⇒ Q(n+1) is trivially true before 3.

Can you do induction over other things? Yes.

Any set where any subset of the set has a smallest element.

In some sense, the natural numbers.

3 / 29

Some quibbles.

The induction principle works on the natural numbers.

Proves statements of form: ∀n ∈ N,P(n).

Yes.

What if the statement is only for n ≥ 3?

∀n ∈ N,(n ≥ 3) =⇒ P(n)

Restate as:

∀n ∈ N,Q(n) where Q(n) = “(n ≥ 3) =⇒ P(n)”.

Base Case: typically start at 3.
Since ∀n ∈ N,Q(n) =⇒ Q(n+1) is trivially true before 3.

Can you do induction over other things? Yes.

Any set where any subset of the set has a smallest element.

In some sense, the natural numbers.

3 / 29

Some quibbles.

The induction principle works on the natural numbers.

Proves statements of form: ∀n ∈ N,P(n).

Yes.

What if the statement is only for n ≥ 3?

∀n ∈ N,(n ≥ 3) =⇒ P(n)

Restate as:
∀n ∈ N,Q(n) where Q(n) = “(n ≥ 3) =⇒ P(n)”.

Base Case: typically start at 3.
Since ∀n ∈ N,Q(n) =⇒ Q(n+1) is trivially true before 3.

Can you do induction over other things? Yes.

Any set where any subset of the set has a smallest element.

In some sense, the natural numbers.

3 / 29

Some quibbles.

The induction principle works on the natural numbers.

Proves statements of form: ∀n ∈ N,P(n).

Yes.

What if the statement is only for n ≥ 3?

∀n ∈ N,(n ≥ 3) =⇒ P(n)

Restate as:
∀n ∈ N,Q(n) where Q(n) = “(n ≥ 3) =⇒ P(n)”.

Base Case: typically start at 3.

Since ∀n ∈ N,Q(n) =⇒ Q(n+1) is trivially true before 3.

Can you do induction over other things? Yes.

Any set where any subset of the set has a smallest element.

In some sense, the natural numbers.

3 / 29

Some quibbles.

The induction principle works on the natural numbers.

Proves statements of form: ∀n ∈ N,P(n).

Yes.

What if the statement is only for n ≥ 3?

∀n ∈ N,(n ≥ 3) =⇒ P(n)

Restate as:
∀n ∈ N,Q(n) where Q(n) = “(n ≥ 3) =⇒ P(n)”.

Base Case: typically start at 3.
Since ∀n ∈ N,Q(n) =⇒ Q(n+1) is trivially true before 3.

Can you do induction over other things? Yes.

Any set where any subset of the set has a smallest element.

In some sense, the natural numbers.

3 / 29

Some quibbles.

The induction principle works on the natural numbers.

Proves statements of form: ∀n ∈ N,P(n).

Yes.

What if the statement is only for n ≥ 3?

∀n ∈ N,(n ≥ 3) =⇒ P(n)

Restate as:
∀n ∈ N,Q(n) where Q(n) = “(n ≥ 3) =⇒ P(n)”.

Base Case: typically start at 3.
Since ∀n ∈ N,Q(n) =⇒ Q(n+1) is trivially true before 3.

Can you do induction over other things? Yes.

Any set where any subset of the set has a smallest element.

In some sense, the natural numbers.

3 / 29

Some quibbles.

The induction principle works on the natural numbers.

Proves statements of form: ∀n ∈ N,P(n).

Yes.

What if the statement is only for n ≥ 3?

∀n ∈ N,(n ≥ 3) =⇒ P(n)

Restate as:
∀n ∈ N,Q(n) where Q(n) = “(n ≥ 3) =⇒ P(n)”.

Base Case: typically start at 3.
Since ∀n ∈ N,Q(n) =⇒ Q(n+1) is trivially true before 3.

Can you do induction over other things? Yes.

Any set where any subset of the set has a smallest element.

In some sense, the natural numbers.

3 / 29

Some quibbles.

The induction principle works on the natural numbers.

Proves statements of form: ∀n ∈ N,P(n).

Yes.

What if the statement is only for n ≥ 3?

∀n ∈ N,(n ≥ 3) =⇒ P(n)

Restate as:
∀n ∈ N,Q(n) where Q(n) = “(n ≥ 3) =⇒ P(n)”.

Base Case: typically start at 3.
Since ∀n ∈ N,Q(n) =⇒ Q(n+1) is trivially true before 3.

Can you do induction over other things? Yes.

Any set where any subset of the set has a smallest element.

In some sense, the natural numbers.

3 / 29

Poll

Question: What is the Main Idea of 61A

(A) Functional Programming.

(B) Environment Diagrams.

(C) Recursion.

(D) John Denero is kind of dreamy.

4 / 29

Strong Induction and Recursion.
Thm: For every natural number n ≥ 12, n = 4x +5y .

Instead of proof, let’s write some code!

def find-x-y(n):
if (n==12) return (3,0)
elif (n==13): return(2,1)
elif (n==14): return(1,2)
elif (n==15): return(0,3)
else:
(x’,y’) = find-x-y(n-4)
return(x’+1,y’)

Prove: Given n, returns (x ,y) where n = 4x +5y , for n ≥ 12.

Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step:
Recursive call is correct: P(n−4) =⇒ P(n).
n−4 = 4x ′+5y ′ =⇒ n = 4(x ′+1)+5(y ′)

Slight differences: showed for all n ≥ 16 that ∧n−1
i=4 P(i) =⇒ P(n).

5 / 29

Strong Induction and Recursion.
Thm: For every natural number n ≥ 12, n = 4x +5y .

Instead of proof, let’s write some code!

def find-x-y(n):
if (n==12) return (3,0)
elif (n==13): return(2,1)
elif (n==14): return(1,2)
elif (n==15): return(0,3)
else:
(x’,y’) = find-x-y(n-4)
return(x’+1,y’)

Prove: Given n, returns (x ,y) where n = 4x +5y , for n ≥ 12.

Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step:
Recursive call is correct: P(n−4) =⇒ P(n).
n−4 = 4x ′+5y ′ =⇒ n = 4(x ′+1)+5(y ′)

Slight differences: showed for all n ≥ 16 that ∧n−1
i=4 P(i) =⇒ P(n).

5 / 29

Strong Induction and Recursion.
Thm: For every natural number n ≥ 12, n = 4x +5y .

Instead of proof, let’s write some code!

def find-x-y(n):
if (n==12) return (3,0)
elif (n==13): return(2,1)
elif (n==14): return(1,2)
elif (n==15): return(0,3)
else:

(x’,y’) = find-x-y(n-4)
return(x’+1,y’)

Prove: Given n, returns (x ,y) where n = 4x +5y , for n ≥ 12.

Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step:
Recursive call is correct: P(n−4) =⇒ P(n).
n−4 = 4x ′+5y ′ =⇒ n = 4(x ′+1)+5(y ′)

Slight differences: showed for all n ≥ 16 that ∧n−1
i=4 P(i) =⇒ P(n).

5 / 29

Strong Induction and Recursion.
Thm: For every natural number n ≥ 12, n = 4x +5y .

Instead of proof, let’s write some code!

def find-x-y(n):
if (n==12) return (3,0)
elif (n==13): return(2,1)
elif (n==14): return(1,2)
elif (n==15): return(0,3)
else:

(x’,y’) = find-x-y(n-4)
return(x’+1,y’)

Prove: Given n, returns (x ,y) where n = 4x +5y , for n ≥ 12.

Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step:
Recursive call is correct: P(n−4) =⇒ P(n).
n−4 = 4x ′+5y ′ =⇒ n = 4(x ′+1)+5(y ′)

Slight differences: showed for all n ≥ 16 that ∧n−1
i=4 P(i) =⇒ P(n).

5 / 29

Strong Induction and Recursion.
Thm: For every natural number n ≥ 12, n = 4x +5y .

Instead of proof, let’s write some code!

def find-x-y(n):
if (n==12) return (3,0)
elif (n==13): return(2,1)
elif (n==14): return(1,2)
elif (n==15): return(0,3)
else:

(x’,y’) = find-x-y(n-4)
return(x’+1,y’)

Prove: Given n, returns (x ,y) where n = 4x +5y , for n ≥ 12.

Base cases:

P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step:
Recursive call is correct: P(n−4) =⇒ P(n).
n−4 = 4x ′+5y ′ =⇒ n = 4(x ′+1)+5(y ′)

Slight differences: showed for all n ≥ 16 that ∧n−1
i=4 P(i) =⇒ P(n).

5 / 29

Strong Induction and Recursion.
Thm: For every natural number n ≥ 12, n = 4x +5y .

Instead of proof, let’s write some code!

def find-x-y(n):
if (n==12) return (3,0)
elif (n==13): return(2,1)
elif (n==14): return(1,2)
elif (n==15): return(0,3)
else:

(x’,y’) = find-x-y(n-4)
return(x’+1,y’)

Prove: Given n, returns (x ,y) where n = 4x +5y , for n ≥ 12.

Base cases: P(12)

, P(13) , P(14) , P(15). Yes.

Strong Induction step:
Recursive call is correct: P(n−4) =⇒ P(n).
n−4 = 4x ′+5y ′ =⇒ n = 4(x ′+1)+5(y ′)

Slight differences: showed for all n ≥ 16 that ∧n−1
i=4 P(i) =⇒ P(n).

5 / 29

Strong Induction and Recursion.
Thm: For every natural number n ≥ 12, n = 4x +5y .

Instead of proof, let’s write some code!

def find-x-y(n):
if (n==12) return (3,0)
elif (n==13): return(2,1)
elif (n==14): return(1,2)
elif (n==15): return(0,3)
else:

(x’,y’) = find-x-y(n-4)
return(x’+1,y’)

Prove: Given n, returns (x ,y) where n = 4x +5y , for n ≥ 12.

Base cases: P(12) , P(13)

, P(14) , P(15). Yes.

Strong Induction step:
Recursive call is correct: P(n−4) =⇒ P(n).
n−4 = 4x ′+5y ′ =⇒ n = 4(x ′+1)+5(y ′)

Slight differences: showed for all n ≥ 16 that ∧n−1
i=4 P(i) =⇒ P(n).

5 / 29

Strong Induction and Recursion.
Thm: For every natural number n ≥ 12, n = 4x +5y .

Instead of proof, let’s write some code!

def find-x-y(n):
if (n==12) return (3,0)
elif (n==13): return(2,1)
elif (n==14): return(1,2)
elif (n==15): return(0,3)
else:

(x’,y’) = find-x-y(n-4)
return(x’+1,y’)

Prove: Given n, returns (x ,y) where n = 4x +5y , for n ≥ 12.

Base cases: P(12) , P(13) , P(14)

, P(15). Yes.

Strong Induction step:
Recursive call is correct: P(n−4) =⇒ P(n).
n−4 = 4x ′+5y ′ =⇒ n = 4(x ′+1)+5(y ′)

Slight differences: showed for all n ≥ 16 that ∧n−1
i=4 P(i) =⇒ P(n).

5 / 29

Strong Induction and Recursion.
Thm: For every natural number n ≥ 12, n = 4x +5y .

Instead of proof, let’s write some code!

def find-x-y(n):
if (n==12) return (3,0)
elif (n==13): return(2,1)
elif (n==14): return(1,2)
elif (n==15): return(0,3)
else:

(x’,y’) = find-x-y(n-4)
return(x’+1,y’)

Prove: Given n, returns (x ,y) where n = 4x +5y , for n ≥ 12.

Base cases: P(12) , P(13) , P(14) , P(15).

Yes.

Strong Induction step:
Recursive call is correct: P(n−4) =⇒ P(n).
n−4 = 4x ′+5y ′ =⇒ n = 4(x ′+1)+5(y ′)

Slight differences: showed for all n ≥ 16 that ∧n−1
i=4 P(i) =⇒ P(n).

5 / 29

Strong Induction and Recursion.
Thm: For every natural number n ≥ 12, n = 4x +5y .

Instead of proof, let’s write some code!

def find-x-y(n):
if (n==12) return (3,0)
elif (n==13): return(2,1)
elif (n==14): return(1,2)
elif (n==15): return(0,3)
else:

(x’,y’) = find-x-y(n-4)
return(x’+1,y’)

Prove: Given n, returns (x ,y) where n = 4x +5y , for n ≥ 12.

Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step:
Recursive call is correct: P(n−4) =⇒ P(n).
n−4 = 4x ′+5y ′ =⇒ n = 4(x ′+1)+5(y ′)

Slight differences: showed for all n ≥ 16 that ∧n−1
i=4 P(i) =⇒ P(n).

5 / 29

Strong Induction and Recursion.
Thm: For every natural number n ≥ 12, n = 4x +5y .

Instead of proof, let’s write some code!

def find-x-y(n):
if (n==12) return (3,0)
elif (n==13): return(2,1)
elif (n==14): return(1,2)
elif (n==15): return(0,3)
else:

(x’,y’) = find-x-y(n-4)
return(x’+1,y’)

Prove: Given n, returns (x ,y) where n = 4x +5y , for n ≥ 12.

Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step:

Recursive call is correct: P(n−4) =⇒ P(n).
n−4 = 4x ′+5y ′ =⇒ n = 4(x ′+1)+5(y ′)

Slight differences: showed for all n ≥ 16 that ∧n−1
i=4 P(i) =⇒ P(n).

5 / 29

Strong Induction and Recursion.
Thm: For every natural number n ≥ 12, n = 4x +5y .

Instead of proof, let’s write some code!

def find-x-y(n):
if (n==12) return (3,0)
elif (n==13): return(2,1)
elif (n==14): return(1,2)
elif (n==15): return(0,3)
else:

(x’,y’) = find-x-y(n-4)
return(x’+1,y’)

Prove: Given n, returns (x ,y) where n = 4x +5y , for n ≥ 12.

Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step:
Recursive call is correct: P(n−4)

=⇒ P(n).
n−4 = 4x ′+5y ′ =⇒ n = 4(x ′+1)+5(y ′)

Slight differences: showed for all n ≥ 16 that ∧n−1
i=4 P(i) =⇒ P(n).

5 / 29

Strong Induction and Recursion.
Thm: For every natural number n ≥ 12, n = 4x +5y .

Instead of proof, let’s write some code!

def find-x-y(n):
if (n==12) return (3,0)
elif (n==13): return(2,1)
elif (n==14): return(1,2)
elif (n==15): return(0,3)
else:

(x’,y’) = find-x-y(n-4)
return(x’+1,y’)

Prove: Given n, returns (x ,y) where n = 4x +5y , for n ≥ 12.

Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step:
Recursive call is correct: P(n−4) =⇒ P(n).

n−4 = 4x ′+5y ′ =⇒ n = 4(x ′+1)+5(y ′)

Slight differences: showed for all n ≥ 16 that ∧n−1
i=4 P(i) =⇒ P(n).

5 / 29

Strong Induction and Recursion.
Thm: For every natural number n ≥ 12, n = 4x +5y .

Instead of proof, let’s write some code!

def find-x-y(n):
if (n==12) return (3,0)
elif (n==13): return(2,1)
elif (n==14): return(1,2)
elif (n==15): return(0,3)
else:

(x’,y’) = find-x-y(n-4)
return(x’+1,y’)

Prove: Given n, returns (x ,y) where n = 4x +5y , for n ≥ 12.

Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step:
Recursive call is correct: P(n−4) =⇒ P(n).
n−4 = 4x ′+5y ′ =⇒ n = 4(x ′+1)+5(y ′)

Slight differences: showed for all n ≥ 16 that ∧n−1
i=4 P(i) =⇒ P(n).

5 / 29

Strong Induction and Recursion.
Thm: For every natural number n ≥ 12, n = 4x +5y .

Instead of proof, let’s write some code!

def find-x-y(n):
if (n==12) return (3,0)
elif (n==13): return(2,1)
elif (n==14): return(1,2)
elif (n==15): return(0,3)
else:

(x’,y’) = find-x-y(n-4)
return(x’+1,y’)

Prove: Given n, returns (x ,y) where n = 4x +5y , for n ≥ 12.

Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step:
Recursive call is correct: P(n−4) =⇒ P(n).
n−4 = 4x ′+5y ′ =⇒ n = 4(x ′+1)+5(y ′)

Slight differences: showed for all n ≥ 16 that ∧n−1
i=4 P(i) =⇒ P(n).

5 / 29

Strong Induction and Recursion.
Thm: For every natural number n ≥ 12, n = 4x +5y .

Instead of proof, let’s write some code!

def find-x-y(n):
if (n==12) return (3,0)
elif (n==13): return(2,1)
elif (n==14): return(1,2)
elif (n==15): return(0,3)
else:

(x’,y’) = find-x-y(n-4)
return(x’+1,y’)

Prove: Given n, returns (x ,y) where n = 4x +5y , for n ≥ 12.

Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step:
Recursive call is correct: P(n−4) =⇒ P(n).
n−4 = 4x ′+5y ′ =⇒ n = 4(x ′+1)+5(y ′)

Slight differences: showed for all n ≥ 16 that ∧n−1
i=4 P(i) =⇒ P(n).

5 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm... It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works! No! Not the same statement!!!!
Need to prove “Sk+1 ≤ 2− 1

(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1).

1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm... It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works! No! Not the same statement!!!!
Need to prove “Sk+1 ≤ 2− 1

(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.

Ind Step: ∑
k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm... It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works! No! Not the same statement!!!!
Need to prove “Sk+1 ≤ 2− 1

(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm... It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works! No! Not the same statement!!!!
Need to prove “Sk+1 ≤ 2− 1

(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm... It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works! No! Not the same statement!!!!
Need to prove “Sk+1 ≤ 2− 1

(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm... It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works! No! Not the same statement!!!!
Need to prove “Sk+1 ≤ 2− 1

(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm... It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works! No! Not the same statement!!!!
Need to prove “Sk+1 ≤ 2− 1

(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?

Hmmm... It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works! No! Not the same statement!!!!
Need to prove “Sk+1 ≤ 2− 1

(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm...

It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works! No! Not the same statement!!!!
Need to prove “Sk+1 ≤ 2− 1

(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm... It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works! No! Not the same statement!!!!
Need to prove “Sk+1 ≤ 2− 1

(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm... It better be that any sum is strictly less than 2.

How much less?

At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works! No! Not the same statement!!!!
Need to prove “Sk+1 ≤ 2− 1

(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm... It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works! No! Not the same statement!!!!
Need to prove “Sk+1 ≤ 2− 1

(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm... It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ”

=⇒ “Sk+1 ≤ 2”
Induction step works! No! Not the same statement!!!!

Need to prove “Sk+1 ≤ 2− 1
(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm... It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works! No! Not the same statement!!!!
Need to prove “Sk+1 ≤ 2− 1

(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm... It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works!

No! Not the same statement!!!!
Need to prove “Sk+1 ≤ 2− 1

(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm... It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works! No!

Not the same statement!!!!
Need to prove “Sk+1 ≤ 2− 1

(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm... It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works! No! Not the same statement!!!!

Need to prove “Sk+1 ≤ 2− 1
(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm... It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works! No! Not the same statement!!!!
Need to prove “Sk+1 ≤ 2− 1

(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm... It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works! No! Not the same statement!!!!
Need to prove “Sk+1 ≤ 2− 1

(k+2)2 ”.

Darn!!!

6 / 29

Strengthening: need to...

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2. (Sn = ∑

n
i=1

1
i2 .)

Base: P(1). 1≤ 2.
Ind Step: ∑

k
i=1

1
i2 ≤ 2.

∑
k+1
i=1

1
i2

= ∑
k
i=1

1
i2 +

1
(k+1)2 .

≤ 2+ 1
(k+1)2

Uh oh?
Hmmm... It better be that any sum is strictly less than 2.

How much less? At least by 1
(k+1)2 for Sk .

“Sk ≤ 2− 1
(k+1)2 ” =⇒ “Sk+1 ≤ 2”

Induction step works! No! Not the same statement!!!!
Need to prove “Sk+1 ≤ 2− 1

(k+2)2 ”.

Darn!!!

6 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:

Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k)

— “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”

Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1)

– “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2

By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?

Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?

Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.

Maybe a linearly decreasing function to keep positive?
Try f (k) = 1

k
1

k+1 ≤
1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1

Multiplied by k +1.
1≤ 1+(1

k −
1

k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1)

Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math.

So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .

7 / 29

Strenthening: how?
Theorem: For all n ≥ 1, ∑

n
i=1

1
i2 ≤ 2− f (n). (Sn = ∑

n
i=1

1
i2 .)

Proof:
Ind hyp: P(k) — “Sk ≤ 2− f (k)”
Prove: P(k +1) – “Sk+1 ≤ 2− f (k +1)”

S(k +1) = Sk +
1

(k+1)2

≤ 2− f (k)+ 1
(k+1)2 By ind. hyp.

Choose f (k +1)≤ f (k)− 1
(k+1)2 .

=⇒ S(k +1)≤ 2− f (k +1).

Can you?
Subtracting off a quadratically decreasing function every time.
Maybe a linearly decreasing function to keep positive?

Try f (k) = 1
k

1
k+1 ≤

1
k −

1
(k+1)2 ?

1≤ k+1
k −

1
k+1 Multiplied by k +1.

1≤ 1+(1
k −

1
k+1) Some math. So yes!

Theorem: For all n ≥ 1, ∑
n
i=1

1
i2 ≤ 2− 1

n .
7 / 29

Stable Matching Problem

I n candidates and n jobs.

I Each job has a ranked preference list of candidates.

I Each candidate has a ranked preference list of jobs.

How should they be matched?

8 / 29

Stable Matching Problem

I n candidates and n jobs.

I Each job has a ranked preference list of candidates.

I Each candidate has a ranked preference list of jobs.

How should they be matched?

8 / 29

Stable Matching Problem

I n candidates and n jobs.

I Each job has a ranked preference list of candidates.

I Each candidate has a ranked preference list of jobs.

How should they be matched?

8 / 29

Stable Matching Problem

I n candidates and n jobs.

I Each job has a ranked preference list of candidates.

I Each candidate has a ranked preference list of jobs.

How should they be matched?

8 / 29

Stable Matching Problem

I n candidates and n jobs.

I Each job has a ranked preference list of candidates.

I Each candidate has a ranked preference list of jobs.

How should they be matched?

8 / 29

Count the ways..

I Maximize total satisfaction.

I Maximize number of first choices.

I Maximize worse off.

I Minimize difference between preference ranks.

9 / 29

Count the ways..

I Maximize total satisfaction.

I Maximize number of first choices.

I Maximize worse off.

I Minimize difference between preference ranks.

9 / 29

Count the ways..

I Maximize total satisfaction.

I Maximize number of first choices.

I Maximize worse off.

I Minimize difference between preference ranks.

9 / 29

Count the ways..

I Maximize total satisfaction.

I Maximize number of first choices.

I Maximize worse off.

I Minimize difference between preference ranks.

9 / 29

The best laid plans..

Consider the pairs..

I (Anthony) Davis and Pelicans

I (Lonzo) Ball and Lakers

Davis prefers the Lakers.

Lakers prefer Davis.

Uh..oh. Sad Lonzo and Pelicans.

10 / 29

The best laid plans..

Consider the pairs..

I (Anthony) Davis and Pelicans

I (Lonzo) Ball and Lakers

Davis prefers the Lakers.

Lakers prefer Davis.

Uh..oh. Sad Lonzo and Pelicans.

10 / 29

The best laid plans..

Consider the pairs..

I (Anthony) Davis and Pelicans

I (Lonzo) Ball and Lakers

Davis prefers the Lakers.

Lakers prefer Davis.

Uh..oh. Sad Lonzo and Pelicans.

10 / 29

The best laid plans..

Consider the pairs..

I (Anthony) Davis and Pelicans

I (Lonzo) Ball and Lakers

Davis prefers the Lakers.

Lakers prefer Davis.

Uh..oh.

Sad Lonzo and Pelicans.

10 / 29

The best laid plans..

Consider the pairs..

I (Anthony) Davis and Pelicans

I (Lonzo) Ball and Lakers

Davis prefers the Lakers.

Lakers prefer Davis.

Uh..oh. Sad Lonzo and Pelicans.

10 / 29

So..

Produce a matching where there are no crazy moves!

Definition: A matching is disjoint set of n job-candidate pairs.

Example: A matching S = {(Lakers,Ball); (Pelicans,Davis)}.
Definition: A rogue couple b,g∗ for a pairing S:
b and g∗ prefer each other to their partners in S

Example: Davis and Lakers are a rogue couple in S.

11 / 29

So..

Produce a matching where there are no crazy moves!

Definition: A matching is disjoint set of n job-candidate pairs.

Example: A matching S = {(Lakers,Ball); (Pelicans,Davis)}.
Definition: A rogue couple b,g∗ for a pairing S:
b and g∗ prefer each other to their partners in S

Example: Davis and Lakers are a rogue couple in S.

11 / 29

So..

Produce a matching where there are no crazy moves!

Definition: A matching is disjoint set of n job-candidate pairs.

Example: A matching S = {(Lakers,Ball); (Pelicans,Davis)}.

Definition: A rogue couple b,g∗ for a pairing S:
b and g∗ prefer each other to their partners in S

Example: Davis and Lakers are a rogue couple in S.

11 / 29

So..

Produce a matching where there are no crazy moves!

Definition: A matching is disjoint set of n job-candidate pairs.

Example: A matching S = {(Lakers,Ball); (Pelicans,Davis)}.
Definition: A rogue couple b,g∗ for a pairing S:
b and g∗ prefer each other to their partners in S

Example: Davis and Lakers are a rogue couple in S.

11 / 29

So..

Produce a matching where there are no crazy moves!

Definition: A matching is disjoint set of n job-candidate pairs.

Example: A matching S = {(Lakers,Ball); (Pelicans,Davis)}.
Definition: A rogue couple b,g∗ for a pairing S:
b and g∗ prefer each other to their partners in S

Example: Davis and Lakers are a rogue couple in S.

11 / 29

A stable matching??

Given a set of preferences.

Is there a stable matching?
How does one find it?

Consider a single type version: stable roommates.
A B C D
B C A D
C A B D
D A B C

A B

C D

12 / 29

A stable matching??

Given a set of preferences.

Is there a stable matching?
How does one find it?

Consider a single type version: stable roommates.
A B C D
B C A D
C A B D
D A B C

A B

C D

12 / 29

A stable matching??

Given a set of preferences.

Is there a stable matching?
How does one find it?

Consider a single type version: stable roommates.
A B C D
B C A D
C A B D
D A B C

A B

C D

12 / 29

A stable matching??

Given a set of preferences.

Is there a stable matching?
How does one find it?

Consider a single type version: stable roommates.
A B C D
B C A D
C A B D
D A B C

A B

C D

12 / 29

A stable matching??

Given a set of preferences.

Is there a stable matching?
How does one find it?

Consider a single type version: stable roommates.
A B C D
B C A D
C A B D
D A B C

A B

C D

12 / 29

A stable matching??

Given a set of preferences.

Is there a stable matching?
How does one find it?

Consider a single type version: stable roommates.
A B C D
B C A D
C A B D
D A B C

A B

C D

12 / 29

A stable matching??

Given a set of preferences.

Is there a stable matching?
How does one find it?

Consider a single type version: stable roommates.
A B C D
B C A D
C A B D
D A B C

A B

C D

12 / 29

A stable matching??

Given a set of preferences.

Is there a stable matching?
How does one find it?

Consider a single type version: stable roommates.
A B C D
B C A D
C A B D
D A B C

A B

C D

12 / 29

A stable matching??

Given a set of preferences.

Is there a stable matching?
How does one find it?

Consider a single type version: stable roommates.
A B C D
B C A D
C A B D
D A B C

A B

C D

12 / 29

A stable matching??

Given a set of preferences.

Is there a stable matching?
How does one find it?

Consider a single type version: stable roommates.
A B C D
B C A D
C A B D
D A B C

A B

C D

12 / 29

A stable matching??

Given a set of preferences.

Is there a stable matching?
How does one find it?

Consider a single type version: stable roommates.
A B C D
B C A D
C A B D
D A B C

A B

C D

12 / 29

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.

2. Each candidate rejects all but their favorite proposer
(whom they put on a string.)

3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.
Does this terminate?

...produce a matching?

....a stable matching?

Do jobs or candidates do “better”?

13 / 29

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.

2. Each candidate rejects all but their favorite proposer
(whom they put on a string.)

3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.
Does this terminate?

...produce a matching?

....a stable matching?

Do jobs or candidates do “better”?

13 / 29

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.

2. Each candidate rejects all but their favorite proposer
(whom they put on a string.)

3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.
Does this terminate?

...produce a matching?

....a stable matching?

Do jobs or candidates do “better”?

13 / 29

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.

2. Each candidate rejects all but their favorite proposer
(whom they put on a string.)

3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.
Does this terminate?

...produce a matching?

....a stable matching?

Do jobs or candidates do “better”?

13 / 29

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.

2. Each candidate rejects all but their favorite proposer
(whom they put on a string.)

3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.
Does this terminate?

...produce a matching?

....a stable matching?

Do jobs or candidates do “better”?

13 / 29

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.

2. Each candidate rejects all but their favorite proposer
(whom they put on a string.)

3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.

Does this terminate?

...produce a matching?

....a stable matching?

Do jobs or candidates do “better”?

13 / 29

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.

2. Each candidate rejects all but their favorite proposer
(whom they put on a string.)

3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.
Does this terminate?

...produce a matching?

....a stable matching?

Do jobs or candidates do “better”?

13 / 29

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.

2. Each candidate rejects all but their favorite proposer
(whom they put on a string.)

3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.
Does this terminate?

...produce a matching?

....a stable matching?

Do jobs or candidates do “better”?

13 / 29

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.

2. Each candidate rejects all but their favorite proposer
(whom they put on a string.)

3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.
Does this terminate?

...produce a matching?

....a stable matching?

Do jobs or candidates do “better”?

13 / 29

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.

2. Each candidate rejects all but their favorite proposer
(whom they put on a string.)

3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.
Does this terminate?

...produce a matching?

....a stable matching?

Do jobs or candidates do “better”?

13 / 29

The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.

2. Each candidate rejects all but their favorite proposer
(whom they put on a string.)

3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.
Does this terminate?

...produce a matching?

....a stable matching?

Do jobs or candidates do “better”?

13 / 29

Example.

Jobs Candidates
A 1

X

2 3 1 C A B
B 1

X

2

X

3 2 A B C
C 2

X

1 3 3 A C B

Day 1 Day 2 Day 3 Day 4 Day 5
1

A, B

X

A A

X

, C C C

2

C B, C

X

B A,B

X

A

3

B

14 / 29

Example.

Jobs Candidates
A 1

X

2 3 1 C A B
B 1

X

2

X

3 2 A B C
C 2

X

1 3 3 A C B

Day 1 Day 2 Day 3 Day 4 Day 5
1

A, B

X

A A

X

, C C C

2

C B, C

X

B A,B

X

A

3

B

14 / 29

Example.

Jobs Candidates
A 1

X

2 3 1 C A B
B 1

X

2

X

3 2 A B C
C 2

X

1 3 3 A C B

Day 1 Day 2 Day 3 Day 4 Day 5
1 A, B

X A A

X

, C C C

2 C

B, C

X

B A,B

X

A

3

B

14 / 29

Example.

Jobs Candidates
A 1

X

2 3 1 C A B
B 1X 2

X

3 2 A B C
C 2

X

1 3 3 A C B

Day 1 Day 2 Day 3 Day 4 Day 5
1 A, BX

A A

X

, C C C

2 C

B, C

X

B A,B

X

A

3

B

14 / 29

Example.

Jobs Candidates
A 1

X

2 3 1 C A B
B 1X 2

X

3 2 A B C
C 2

X

1 3 3 A C B

Day 1 Day 2 Day 3 Day 4 Day 5
1 A, BX A

A

X

, C C C

2 C B, C

X B A,B

X

A

3

B

14 / 29

Example.

Jobs Candidates
A 1

X

2 3 1 C A B
B 1X 2

X

3 2 A B C
C 2X 1 3 3 A C B

Day 1 Day 2 Day 3 Day 4 Day 5
1 A, BX A

A

X

, C C C

2 C B, CX

B A,B

X

A

3

B

14 / 29

Example.

Jobs Candidates
A 1

X

2 3 1 C A B
B 1X 2

X

3 2 A B C
C 2X 1 3 3 A C B

Day 1 Day 2 Day 3 Day 4 Day 5
1 A, BX A A

X

, C

C C

2 C B, CX B

A,B

X

A

3

B

14 / 29

Example.

Jobs Candidates
A 1X 2 3 1 C A B
B 1X 2

X

3 2 A B C
C 2X 1 3 3 A C B

Day 1 Day 2 Day 3 Day 4 Day 5
1 A, BX A AX , C

C C

2 C B, CX B

A,B

X

A

3

B

14 / 29

Example.

Jobs Candidates
A 1X 2 3 1 C A B
B 1X 2

X

3 2 A B C
C 2X 1 3 3 A C B

Day 1 Day 2 Day 3 Day 4 Day 5
1 A, BX A AX , C C

C

2 C B, CX B A,B

X A

3

B

14 / 29

Example.

Jobs Candidates
A 1X 2 3 1 C A B
B 1X 2X 3 2 A B C
C 2X 1 3 3 A C B

Day 1 Day 2 Day 3 Day 4 Day 5
1 A, BX A AX , C C

C

2 C B, CX B A,BX

A

3

B

14 / 29

Example.

Jobs Candidates
A 1X 2 3 1 C A B
B 1X 2X 3 2 A B C
C 2X 1 3 3 A C B

Day 1 Day 2 Day 3 Day 4 Day 5
1 A, BX A AX , C C C
2 C B, CX B A,BX A
3 B

14 / 29

Example.

Jobs Candidates
A 1X 2 3 1 C A B
B 1X 2X 3 2 A B C
C 2X 1 3 3 A C B

Day 1 Day 2 Day 3 Day 4 Day 5
1 A, BX A AX , C C C
2 C B, CX B A,BX A
3 B

14 / 29

Termination.

Every non-terminated day a job crossed an item off the list.

Total size of lists? n jobs, n length list. n2

Terminates in ≤ n2 steps!

15 / 29

Termination.

Every non-terminated day a job crossed an item off the list.

Total size of lists? n jobs, n length list. n2

Terminates in ≤ n2 steps!

15 / 29

Termination.

Every non-terminated day a job crossed an item off the list.

Total size of lists?

n jobs, n length list. n2

Terminates in ≤ n2 steps!

15 / 29

Termination.

Every non-terminated day a job crossed an item off the list.

Total size of lists? n jobs, n length list.

n2

Terminates in ≤ n2 steps!

15 / 29

Termination.

Every non-terminated day a job crossed an item off the list.

Total size of lists? n jobs, n length list. n2

Terminates in ≤ n2 steps!

15 / 29

Termination.

Every non-terminated day a job crossed an item off the list.

Total size of lists? n jobs, n length list. n2

Terminates in ≤ n2 steps!

15 / 29

It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string,
any job, b′, on candidate g’s string for any day t ′ > t
is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, b = b′.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.

16 / 29

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates

If on day t a candidate g has a job b on a string,
any job, b′, on candidate g’s string for any day t ′ > t
is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, b = b′.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.

16 / 29

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string,

any job, b′, on candidate g’s string for any day t ′ > t
is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, b = b′.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.

16 / 29

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string,
any job, b′, on candidate g’s string for any day t ′ > t

is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, b = b′.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.

16 / 29

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string,
any job, b′, on candidate g’s string for any day t ′ > t
is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, b = b′.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.

16 / 29

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string,
any job, b′, on candidate g’s string for any day t ′ > t
is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, b = b′.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.

16 / 29

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string,
any job, b′, on candidate g’s string for any day t ′ > t
is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, b = b′.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.

16 / 29

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string,
any job, b′, on candidate g’s string for any day t ′ > t
is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, b = b′.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.

16 / 29

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string,
any job, b′, on candidate g’s string for any day t ′ > t
is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, b = b′.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.

16 / 29

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string,
any job, b′, on candidate g’s string for any day t ′ > t
is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, b = b′.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.

16 / 29

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string,
any job, b′, on candidate g’s string for any day t ′ > t
is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, b = b′.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.

16 / 29

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string,
any job, b′, on candidate g’s string for any day t ′ > t
is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string?

Yes.

Alice prefers day 10 job as much as day 7 job. Here, b = b′.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.

16 / 29

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string,
any job, b′, on candidate g’s string for any day t ′ > t
is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, b = b′.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.

16 / 29

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string,
any job, b′, on candidate g’s string for any day t ′ > t
is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job.

Here, b = b′.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.

16 / 29

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string,
any job, b′, on candidate g’s string for any day t ′ > t
is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, b = b′.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.

16 / 29

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string,
any job, b′, on candidate g’s string for any day t ′ > t
is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, b = b′.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.

16 / 29

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string,
any job, b′, on candidate g’s string for any day t ′ > t
is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, b = b′.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.

16 / 29

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string,
any job, b′, on candidate g’s string for any day t ′ > t
is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, b = b′.

Why is lemma true?

Proof Idea:

She can always keep the previous job on the string.

16 / 29

It gets better every day for candidates.
Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string,
any job, b′, on candidate g’s string for any day t ′ > t
is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on
string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated
Concrete”?

g - ’Alice’, b - ’Am. Con.’, b′ - ’Am. Asph.’, t = 5, t ′ = 7.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, b = b′.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.

16 / 29

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b′, on g’s
string for any day t ′ > t is at least as good as b.

Proof:
P(k)- - “job on g’s string is at least as good as b on day t +k ”

P(0)– true. Candidate has b on string.

Assume P(k). Let b′ be job on string on day t +k .

On day t +k +1, job b′ comes back.
Candidate g can choose b′, or do better with another job, b′′

That is, b′ ≤ b by induction hypothesis.
And b′′ is better than b′ by algorithm.

=⇒ Candidate does at least as well as with b.

P(k) =⇒ P(k +1).
And by principle of induction, lemma holds for every day after t .

17 / 29

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b′, on g’s
string for any day t ′ > t is at least as good as b.

Proof:
P(k)- - “job on g’s string is at least as good as b on day t +k ”

P(0)– true. Candidate has b on string.

Assume P(k). Let b′ be job on string on day t +k .

On day t +k +1, job b′ comes back.
Candidate g can choose b′, or do better with another job, b′′

That is, b′ ≤ b by induction hypothesis.
And b′′ is better than b′ by algorithm.

=⇒ Candidate does at least as well as with b.

P(k) =⇒ P(k +1).
And by principle of induction, lemma holds for every day after t .

17 / 29

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b′, on g’s
string for any day t ′ > t is at least as good as b.

Proof:

P(k)- - “job on g’s string is at least as good as b on day t +k ”

P(0)– true. Candidate has b on string.

Assume P(k). Let b′ be job on string on day t +k .

On day t +k +1, job b′ comes back.
Candidate g can choose b′, or do better with another job, b′′

That is, b′ ≤ b by induction hypothesis.
And b′′ is better than b′ by algorithm.

=⇒ Candidate does at least as well as with b.

P(k) =⇒ P(k +1).
And by principle of induction, lemma holds for every day after t .

17 / 29

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b′, on g’s
string for any day t ′ > t is at least as good as b.

Proof:
P(k)- - “job on g’s string is at least as good as b on day t +k ”

P(0)– true. Candidate has b on string.

Assume P(k). Let b′ be job on string on day t +k .

On day t +k +1, job b′ comes back.
Candidate g can choose b′, or do better with another job, b′′

That is, b′ ≤ b by induction hypothesis.
And b′′ is better than b′ by algorithm.

=⇒ Candidate does at least as well as with b.

P(k) =⇒ P(k +1).
And by principle of induction, lemma holds for every day after t .

17 / 29

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b′, on g’s
string for any day t ′ > t is at least as good as b.

Proof:
P(k)- - “job on g’s string is at least as good as b on day t +k ”

P(0)– true. Candidate has b on string.

Assume P(k). Let b′ be job on string on day t +k .

On day t +k +1, job b′ comes back.
Candidate g can choose b′, or do better with another job, b′′

That is, b′ ≤ b by induction hypothesis.
And b′′ is better than b′ by algorithm.

=⇒ Candidate does at least as well as with b.

P(k) =⇒ P(k +1).
And by principle of induction, lemma holds for every day after t .

17 / 29

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b′, on g’s
string for any day t ′ > t is at least as good as b.

Proof:
P(k)- - “job on g’s string is at least as good as b on day t +k ”

P(0)– true. Candidate has b on string.

Assume P(k). Let b′ be job on string on day t +k .

On day t +k +1, job b′ comes back.
Candidate g can choose b′, or do better with another job, b′′

That is, b′ ≤ b by induction hypothesis.
And b′′ is better than b′ by algorithm.

=⇒ Candidate does at least as well as with b.

P(k) =⇒ P(k +1).
And by principle of induction, lemma holds for every day after t .

17 / 29

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b′, on g’s
string for any day t ′ > t is at least as good as b.

Proof:
P(k)- - “job on g’s string is at least as good as b on day t +k ”

P(0)– true. Candidate has b on string.

Assume P(k). Let b′ be job on string on day t +k .

On day t +k +1, job b′ comes back.

Candidate g can choose b′, or do better with another job, b′′

That is, b′ ≤ b by induction hypothesis.
And b′′ is better than b′ by algorithm.

=⇒ Candidate does at least as well as with b.

P(k) =⇒ P(k +1).
And by principle of induction, lemma holds for every day after t .

17 / 29

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b′, on g’s
string for any day t ′ > t is at least as good as b.

Proof:
P(k)- - “job on g’s string is at least as good as b on day t +k ”

P(0)– true. Candidate has b on string.

Assume P(k). Let b′ be job on string on day t +k .

On day t +k +1, job b′ comes back.
Candidate g can choose b′,

or do better with another job, b′′

That is, b′ ≤ b by induction hypothesis.
And b′′ is better than b′ by algorithm.

=⇒ Candidate does at least as well as with b.

P(k) =⇒ P(k +1).
And by principle of induction, lemma holds for every day after t .

17 / 29

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b′, on g’s
string for any day t ′ > t is at least as good as b.

Proof:
P(k)- - “job on g’s string is at least as good as b on day t +k ”

P(0)– true. Candidate has b on string.

Assume P(k). Let b′ be job on string on day t +k .

On day t +k +1, job b′ comes back.
Candidate g can choose b′, or do better with another job, b′′

That is, b′ ≤ b by induction hypothesis.
And b′′ is better than b′ by algorithm.

=⇒ Candidate does at least as well as with b.

P(k) =⇒ P(k +1).
And by principle of induction, lemma holds for every day after t .

17 / 29

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b′, on g’s
string for any day t ′ > t is at least as good as b.

Proof:
P(k)- - “job on g’s string is at least as good as b on day t +k ”

P(0)– true. Candidate has b on string.

Assume P(k). Let b′ be job on string on day t +k .

On day t +k +1, job b′ comes back.
Candidate g can choose b′, or do better with another job, b′′

That is,

b′ ≤ b by induction hypothesis.
And b′′ is better than b′ by algorithm.

=⇒ Candidate does at least as well as with b.

P(k) =⇒ P(k +1).
And by principle of induction, lemma holds for every day after t .

17 / 29

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b′, on g’s
string for any day t ′ > t is at least as good as b.

Proof:
P(k)- - “job on g’s string is at least as good as b on day t +k ”

P(0)– true. Candidate has b on string.

Assume P(k). Let b′ be job on string on day t +k .

On day t +k +1, job b′ comes back.
Candidate g can choose b′, or do better with another job, b′′

That is, b′ ≤ b by induction hypothesis.

And b′′ is better than b′ by algorithm.
=⇒ Candidate does at least as well as with b.

P(k) =⇒ P(k +1).
And by principle of induction, lemma holds for every day after t .

17 / 29

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b′, on g’s
string for any day t ′ > t is at least as good as b.

Proof:
P(k)- - “job on g’s string is at least as good as b on day t +k ”

P(0)– true. Candidate has b on string.

Assume P(k). Let b′ be job on string on day t +k .

On day t +k +1, job b′ comes back.
Candidate g can choose b′, or do better with another job, b′′

That is, b′ ≤ b by induction hypothesis.
And b′′ is better than b′ by algorithm.

=⇒ Candidate does at least as well as with b.

P(k) =⇒ P(k +1).
And by principle of induction, lemma holds for every day after t .

17 / 29

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b′, on g’s
string for any day t ′ > t is at least as good as b.

Proof:
P(k)- - “job on g’s string is at least as good as b on day t +k ”

P(0)– true. Candidate has b on string.

Assume P(k). Let b′ be job on string on day t +k .

On day t +k +1, job b′ comes back.
Candidate g can choose b′, or do better with another job, b′′

That is, b′ ≤ b by induction hypothesis.
And b′′ is better than b′ by algorithm.

=⇒ Candidate does at least as well as with b.

P(k) =⇒ P(k +1).
And by principle of induction, lemma holds for every day after t .

17 / 29

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b′, on g’s
string for any day t ′ > t is at least as good as b.

Proof:
P(k)- - “job on g’s string is at least as good as b on day t +k ”

P(0)– true. Candidate has b on string.

Assume P(k). Let b′ be job on string on day t +k .

On day t +k +1, job b′ comes back.
Candidate g can choose b′, or do better with another job, b′′

That is, b′ ≤ b by induction hypothesis.
And b′′ is better than b′ by algorithm.

=⇒ Candidate does at least as well as with b.

P(k) =⇒ P(k +1).

And by principle of induction, lemma holds for every day after t .

17 / 29

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b′, on g’s
string for any day t ′ > t is at least as good as b.

Proof:
P(k)- - “job on g’s string is at least as good as b on day t +k ”

P(0)– true. Candidate has b on string.

Assume P(k). Let b′ be job on string on day t +k .

On day t +k +1, job b′ comes back.
Candidate g can choose b′, or do better with another job, b′′

That is, b′ ≤ b by induction hypothesis.
And b′′ is better than b′ by algorithm.

=⇒ Candidate does at least as well as with b.

P(k) =⇒ P(k +1).
And by principle of induction, lemma holds for every day after t .

17 / 29

Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b′, on g’s
string for any day t ′ > t is at least as good as b.

Proof:
P(k)- - “job on g’s string is at least as good as b on day t +k ”

P(0)– true. Candidate has b on string.

Assume P(k). Let b′ be job on string on day t +k .

On day t +k +1, job b′ comes back.
Candidate g can choose b′, or do better with another job, b′′

That is, b′ ≤ b by induction hypothesis.
And b′′ is better than b′ by algorithm.

=⇒ Candidate does at least as well as with b.

P(k) =⇒ P(k +1).
And by principle of induction, lemma holds for every day after t .

17 / 29

Poll

Question: It just gets better for candidates, because?

(A) Induction on days.

(B) When the economy is good.

(C) The candidate can always keep the job on the string.

18 / 29

Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.

Every candidate has been proposed to by b,
and Improvement lemma

=⇒ each candidate has a job on a string.

and each job is on at most one string.

n candidates and n jobs. Same number of each.

=⇒ b must be on some candidate’s string!

Contradiction.

19 / 29

Matching when done.

Lemma: Every job is matched at end.

Proof:

If not, a job b must have been rejected n times.

Every candidate has been proposed to by b,
and Improvement lemma

=⇒ each candidate has a job on a string.

and each job is on at most one string.

n candidates and n jobs. Same number of each.

=⇒ b must be on some candidate’s string!

Contradiction.

19 / 29

Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.

Every candidate has been proposed to by b,
and Improvement lemma

=⇒ each candidate has a job on a string.

and each job is on at most one string.

n candidates and n jobs. Same number of each.

=⇒ b must be on some candidate’s string!

Contradiction.

19 / 29

Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.

Every candidate has been proposed to by b,

and Improvement lemma

=⇒ each candidate has a job on a string.

and each job is on at most one string.

n candidates and n jobs. Same number of each.

=⇒ b must be on some candidate’s string!

Contradiction.

19 / 29

Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.

Every candidate has been proposed to by b,
and Improvement lemma

=⇒ each candidate has a job on a string.

and each job is on at most one string.

n candidates and n jobs. Same number of each.

=⇒ b must be on some candidate’s string!

Contradiction.

19 / 29

Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.

Every candidate has been proposed to by b,
and Improvement lemma

=⇒ each candidate has a job on a string.

and each job is on at most one string.

n candidates and n jobs. Same number of each.

=⇒ b must be on some candidate’s string!

Contradiction.

19 / 29

Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.

Every candidate has been proposed to by b,
and Improvement lemma

=⇒ each candidate has a job on a string.

and each job is on at most one string.

n candidates and n jobs. Same number of each.

=⇒ b must be on some candidate’s string!

Contradiction.

19 / 29

Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.

Every candidate has been proposed to by b,
and Improvement lemma

=⇒ each candidate has a job on a string.

and each job is on at most one string.

n candidates and n jobs.

Same number of each.

=⇒ b must be on some candidate’s string!

Contradiction.

19 / 29

Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.

Every candidate has been proposed to by b,
and Improvement lemma

=⇒ each candidate has a job on a string.

and each job is on at most one string.

n candidates and n jobs. Same number of each.

=⇒ b must be on some candidate’s string!

Contradiction.

19 / 29

Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.

Every candidate has been proposed to by b,
and Improvement lemma

=⇒ each candidate has a job on a string.

and each job is on at most one string.

n candidates and n jobs. Same number of each.

=⇒ b must be on some candidate’s string!

Contradiction.

19 / 29

Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.

Every candidate has been proposed to by b,
and Improvement lemma

=⇒ each candidate has a job on a string.

and each job is on at most one string.

n candidates and n jobs. Same number of each.

=⇒ b must be on some candidate’s string!

Contradiction.

19 / 29

Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.

Every candidate has been proposed to by b,
and Improvement lemma

=⇒ each candidate has a job on a string.

and each job is on at most one string.

n candidates and n jobs. Same number of each.

=⇒ b must be on some candidate’s string!

Contradiction.

19 / 29

Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.

Every candidate has been proposed to by b,
and Improvement lemma

=⇒ each candidate has a job on a string.

and each job is on at most one string.

n candidates and n jobs. Same number of each.

=⇒ b must be on some candidate’s string!

Contradiction.

19 / 29

Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.

Every candidate has been proposed to by b,
and Improvement lemma

=⇒ each candidate has a job on a string.

and each job is on at most one string.

n candidates and n jobs. Same number of each.

=⇒ b must be on some candidate’s string!

Contradiction.

19 / 29

Question: The argument for termination uses.

(A) Implies: no unmatched job at end.

(B) Improvement Lemma: every candidate matched.

(C) Algorithm: unmatched job would ask everyone.

(D) Implies: every one gets their favorite job.

20 / 29

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by
traditional marriage algorithm.

Proof:
Assume there is a rogue couple; (b,g∗)

b g

b∗ g∗ b prefers g∗ to g.

g∗ prefers b to b∗.

Job b proposes to g∗ before proposing to g.

So g∗ rejected b (since he moved on)

By improvement lemma, g∗ prefers b∗ to b.

Contradiction!

21 / 29

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by
traditional marriage algorithm.

Proof:
Assume there is a rogue couple; (b,g∗)

b g

b∗ g∗ b prefers g∗ to g.

g∗ prefers b to b∗.

Job b proposes to g∗ before proposing to g.

So g∗ rejected b (since he moved on)

By improvement lemma, g∗ prefers b∗ to b.

Contradiction!

21 / 29

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by
traditional marriage algorithm.

Proof:
Assume there is a rogue couple; (b,g∗)

b g

b∗ g∗

b prefers g∗ to g.

g∗ prefers b to b∗.

Job b proposes to g∗ before proposing to g.

So g∗ rejected b (since he moved on)

By improvement lemma, g∗ prefers b∗ to b.

Contradiction!

21 / 29

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by
traditional marriage algorithm.

Proof:
Assume there is a rogue couple; (b,g∗)

b g

b∗ g∗

b prefers g∗ to g.

g∗ prefers b to b∗.

Job b proposes to g∗ before proposing to g.

So g∗ rejected b (since he moved on)

By improvement lemma, g∗ prefers b∗ to b.

Contradiction!

21 / 29

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by
traditional marriage algorithm.

Proof:
Assume there is a rogue couple; (b,g∗)

b g

b∗ g∗ b prefers g∗ to g.

g∗ prefers b to b∗.

Job b proposes to g∗ before proposing to g.

So g∗ rejected b (since he moved on)

By improvement lemma, g∗ prefers b∗ to b.

Contradiction!

21 / 29

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by
traditional marriage algorithm.

Proof:
Assume there is a rogue couple; (b,g∗)

b g

b∗ g∗ b prefers g∗ to g.

g∗ prefers b to b∗.

Job b proposes to g∗ before proposing to g.

So g∗ rejected b (since he moved on)

By improvement lemma, g∗ prefers b∗ to b.

Contradiction!

21 / 29

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by
traditional marriage algorithm.

Proof:
Assume there is a rogue couple; (b,g∗)

b g

b∗ g∗ b prefers g∗ to g.

g∗ prefers b to b∗.

Job b proposes to g∗ before proposing to g.

So g∗ rejected b (since he moved on)

By improvement lemma, g∗ prefers b∗ to b.

Contradiction!

21 / 29

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by
traditional marriage algorithm.

Proof:
Assume there is a rogue couple; (b,g∗)

b g

b∗ g∗ b prefers g∗ to g.

g∗ prefers b to b∗.

Job b proposes to g∗ before proposing to g.

So g∗ rejected b (since he moved on)

By improvement lemma, g∗ prefers b∗ to b.

Contradiction!

21 / 29

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by
traditional marriage algorithm.

Proof:
Assume there is a rogue couple; (b,g∗)

b g

b∗ g∗ b prefers g∗ to g.

g∗ prefers b to b∗.

Job b proposes to g∗ before proposing to g.

So g∗ rejected b (since he moved on)

By improvement lemma, g∗ prefers b∗ to b.

Contradiction!

21 / 29

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by
traditional marriage algorithm.

Proof:
Assume there is a rogue couple; (b,g∗)

b g

b∗ g∗ b prefers g∗ to g.

g∗ prefers b to b∗.

Job b proposes to g∗ before proposing to g.

So g∗ rejected b (since he moved on)

By improvement lemma, g∗ prefers b∗ to b.

Contradiction!

21 / 29

Matching is Stable.

Lemma: There is no rogue couple for the matching formed by
traditional marriage algorithm.

Proof:
Assume there is a rogue couple; (b,g∗)

b g

b∗ g∗ b prefers g∗ to g.

g∗ prefers b to b∗.

Job b proposes to g∗ before proposing to g.

So g∗ rejected b (since he moved on)

By improvement lemma, g∗ prefers b∗ to b.

Contradiction!

21 / 29

Good for jobs? candidates?
Is the Job-Proposes better for jobs?

for candidates?

Definition: A matching is x-optimal if x ′s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ′s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:

b-optimal pairing different from the b′-optimal matching!
Yes? No?

22 / 29

Good for jobs? candidates?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x ′s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ′s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:

b-optimal pairing different from the b′-optimal matching!
Yes? No?

22 / 29

Good for jobs? candidates?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x ′s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ′s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:

b-optimal pairing different from the b′-optimal matching!
Yes? No?

22 / 29

Good for jobs? candidates?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x ′s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ′s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:

b-optimal pairing different from the b′-optimal matching!
Yes? No?

22 / 29

Good for jobs? candidates?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x ′s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ′s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:

b-optimal pairing different from the b′-optimal matching!
Yes? No?

22 / 29

Good for jobs? candidates?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x ′s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ′s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:

b-optimal pairing different from the b′-optimal matching!
Yes? No?

22 / 29

Good for jobs? candidates?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x ′s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ′s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:

b-optimal pairing different from the b′-optimal matching!
Yes? No?

22 / 29

Good for jobs? candidates?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x ′s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ′s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True?

False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:

b-optimal pairing different from the b′-optimal matching!
Yes? No?

22 / 29

Good for jobs? candidates?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x ′s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ′s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False?

False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:

b-optimal pairing different from the b′-optimal matching!
Yes? No?

22 / 29

Good for jobs? candidates?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x ′s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ′s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:

b-optimal pairing different from the b′-optimal matching!
Yes? No?

22 / 29

Good for jobs? candidates?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x ′s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ′s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.

As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:

b-optimal pairing different from the b′-optimal matching!
Yes? No?

22 / 29

Good for jobs? candidates?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x ′s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ′s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:

b-optimal pairing different from the b′-optimal matching!
Yes? No?

22 / 29

Good for jobs? candidates?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x ′s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ′s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?

Is it possible:
b-optimal pairing different from the b′-optimal matching!

Yes? No?

22 / 29

Good for jobs? candidates?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x ′s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ′s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:

b-optimal pairing different from the b′-optimal matching!
Yes? No?

22 / 29

Good for jobs? candidates?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x ′s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ′s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:

b-optimal pairing different from the b′-optimal matching!

Yes? No?

22 / 29

Good for jobs? candidates?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x ′s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ′s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:

b-optimal pairing different from the b′-optimal matching!
Yes?

No?

22 / 29

Good for jobs? candidates?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x ′s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ′s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:

b-optimal pairing different from the b′-optimal matching!
Yes? No?

22 / 29

Good for jobs? candidates?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x ′s partner
is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x ′s partner
is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.
As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:

b-optimal pairing different from the b′-optimal matching!
Yes? No?

22 / 29

Question: The SMA produces a stable pairing is a proof by?

(A) Contradiction.

(B) Uses the improment lemma.

(C) Induction.

(D) Direct.

23 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable?

Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?

Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.

So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.

So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2.

Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2).

Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable?

Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1).

Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A?

S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S

Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B?

S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S

Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1?

T Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T

Which is optimal for 2? T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2?

T

24 / 29

Understanding Optimality: by example.
A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A,1),(B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A,1),(B,2). Stable? Yes.

Pairing T : (A,2),(B,1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T

24 / 29

Job Propose and Candidate Reject is optimal!
For jobs?

For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:

Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not:

there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected

by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with

in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t

=⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.

So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing.

Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes:

S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable.

(b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S.

But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g)

is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...

Induction.

25 / 29

Job Propose and Candidate Reject is optimal!
For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b∗ - knocks b off of g’s string on day t =⇒ g prefers b∗ to b

By choice of t , b∗ likes g at least as much as optimal candidate.

=⇒ b∗ prefers g to its partner g∗ in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. (b∗,g∗) ∈ S. But (b∗,g) is rogue couple!

Used Well-Ordering principle...Induction.

25 / 29

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal
pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T , (g,b) is pair.

In S, (g,b∗) is pair.

g prefers b to b∗.

T is job optimal, so b prefers g to its partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.
Structural statement: Job optimality =⇒ Candidate pessimality.

26 / 29

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal
pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T , (g,b) is pair.

In S, (g,b∗) is pair.

g prefers b to b∗.

T is job optimal, so b prefers g to its partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.
Structural statement: Job optimality =⇒ Candidate pessimality.

26 / 29

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal
pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T , (g,b) is pair.

In S, (g,b∗) is pair.

g prefers b to b∗.

T is job optimal, so b prefers g to its partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.
Structural statement: Job optimality =⇒ Candidate pessimality.

26 / 29

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal
pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T , (g,b) is pair.

In S, (g,b∗) is pair.

g prefers b to b∗.

T is job optimal, so b prefers g to its partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.
Structural statement: Job optimality =⇒ Candidate pessimality.

26 / 29

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal
pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T , (g,b) is pair.

In S, (g,b∗) is pair.

g prefers b to b∗.

T is job optimal, so b prefers g to its partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.
Structural statement: Job optimality =⇒ Candidate pessimality.

26 / 29

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal
pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T , (g,b) is pair.

In S, (g,b∗) is pair.

g prefers b to b∗.

T is job optimal, so b prefers g to its partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.
Structural statement: Job optimality =⇒ Candidate pessimality.

26 / 29

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal
pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T , (g,b) is pair.

In S, (g,b∗) is pair.

g prefers b to b∗.

T is job optimal, so b prefers g to its partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.
Structural statement: Job optimality =⇒ Candidate pessimality.

26 / 29

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal
pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T , (g,b) is pair.

In S, (g,b∗) is pair.

g prefers b to b∗.

T is job optimal, so b prefers g to its partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.
Structural statement: Job optimality =⇒ Candidate pessimality.

26 / 29

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal
pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T , (g,b) is pair.

In S, (g,b∗) is pair.

g prefers b to b∗.

T is job optimal, so b prefers g to its partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.
Structural statement: Job optimality =⇒ Candidate pessimality.

26 / 29

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal
pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T , (g,b) is pair.

In S, (g,b∗) is pair.

g prefers b to b∗.

T is job optimal, so b prefers g to its partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.
Structural statement: Job optimality =⇒ Candidate pessimality.

26 / 29

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal
pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T , (g,b) is pair.

In S, (g,b∗) is pair.

g prefers b to b∗.

T is job optimal, so b prefers g to its partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.
Structural statement: Job optimality =⇒ Candidate pessimality.

26 / 29

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal
pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T , (g,b) is pair.

In S, (g,b∗) is pair.

g prefers b to b∗.

T is job optimal, so b prefers g to its partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.
Structural statement: Job optimality =⇒ Candidate pessimality.

26 / 29

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal
pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T , (g,b) is pair.

In S, (g,b∗) is pair.

g prefers b to b∗.

T is job optimal, so b prefers g to its partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes:

Not really induction.
Structural statement: Job optimality =⇒ Candidate pessimality.

26 / 29

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal
pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T , (g,b) is pair.

In S, (g,b∗) is pair.

g prefers b to b∗.

T is job optimal, so b prefers g to its partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.

Structural statement: Job optimality =⇒ Candidate pessimality.

26 / 29

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal
pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T , (g,b) is pair.

In S, (g,b∗) is pair.

g prefers b to b∗.

T is job optimal, so b prefers g to its partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.
Structural statement: Job optimality

=⇒ Candidate pessimality.

26 / 29

How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal
pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T , (g,b) is pair.

In S, (g,b∗) is pair.

g prefers b to b∗.

T is job optimal, so b prefers g to its partner in S.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.
Structural statement: Job optimality =⇒ Candidate pessimality.

26 / 29

Quick Questions.

How does one make it better for candidates?

Propose and Reject - stable matching algorithm. One side
proposes.

Jobs Propose =⇒ job optimal.
Candidates propose. =⇒ optimal for candidates.

27 / 29

Quick Questions.

How does one make it better for candidates?

Propose and Reject - stable matching algorithm. One side
proposes.

Jobs Propose =⇒ job optimal.
Candidates propose. =⇒ optimal for candidates.

27 / 29

Quick Questions.

How does one make it better for candidates?

Propose and Reject - stable matching algorithm. One side
proposes.

Jobs Propose =⇒ job optimal.

Candidates propose. =⇒ optimal for candidates.

27 / 29

Quick Questions.

How does one make it better for candidates?

Propose and Reject - stable matching algorithm. One side
proposes.

Jobs Propose =⇒ job optimal.
Candidates propose.

=⇒ optimal for candidates.

27 / 29

Quick Questions.

How does one make it better for candidates?

Propose and Reject - stable matching algorithm. One side
proposes.

Jobs Propose =⇒ job optimal.
Candidates propose. =⇒ optimal for candidates.

27 / 29

Residency Matching..

The method was used to match residents to hospitals.

Hospital optimal....

..until 1990’s...Resident optimal.

Another variation: couples.

28 / 29

Residency Matching..

The method was used to match residents to hospitals.

Hospital optimal....

..until 1990’s...Resident optimal.

Another variation: couples.

28 / 29

Residency Matching..

The method was used to match residents to hospitals.

Hospital optimal....

..until 1990’s...Resident optimal.

Another variation: couples.

28 / 29

Residency Matching..

The method was used to match residents to hospitals.

Hospital optimal....

..until 1990’s...

Resident optimal.

Another variation: couples.

28 / 29

Residency Matching..

The method was used to match residents to hospitals.

Hospital optimal....

..until 1990’s...Resident optimal.

Another variation: couples.

28 / 29

Residency Matching..

The method was used to match residents to hospitals.

Hospital optimal....

..until 1990’s...Resident optimal.

Another variation: couples.

28 / 29

Residency Matching..

The method was used to match residents to hospitals.

Hospital optimal....

..until 1990’s...Resident optimal.

Another variation: couples.

28 / 29

Takeaways.

Analysis of cool algorithm with interesting goal: stability.

“Economic”: different utilities.

Definition of optimality: best utility in stable world.

Action gives better results for individuals but gives instability.

Induction over steps of algorithm.

Proofs carefully use definition:
Optimality proof:
contradiction of the existence of a better pairing.

29 / 29

Takeaways.

Analysis of cool algorithm with interesting goal: stability.

“Economic”: different utilities.

Definition of optimality: best utility in stable world.

Action gives better results for individuals but gives instability.

Induction over steps of algorithm.

Proofs carefully use definition:
Optimality proof:
contradiction of the existence of a better pairing.

29 / 29

Takeaways.

Analysis of cool algorithm with interesting goal: stability.

“Economic”: different utilities.

Definition of optimality: best utility in stable world.

Action gives better results for individuals but gives instability.

Induction over steps of algorithm.

Proofs carefully use definition:
Optimality proof:
contradiction of the existence of a better pairing.

29 / 29

Takeaways.

Analysis of cool algorithm with interesting goal: stability.

“Economic”: different utilities.

Definition of optimality: best utility in stable world.

Action gives better results for individuals but gives instability.

Induction over steps of algorithm.

Proofs carefully use definition:
Optimality proof:
contradiction of the existence of a better pairing.

29 / 29

Takeaways.

Analysis of cool algorithm with interesting goal: stability.

“Economic”: different utilities.

Definition of optimality: best utility in stable world.

Action gives better results for individuals but gives instability.

Induction over steps of algorithm.

Proofs carefully use definition:
Optimality proof:
contradiction of the existence of a better pairing.

29 / 29

Takeaways.

Analysis of cool algorithm with interesting goal: stability.

“Economic”: different utilities.

Definition of optimality: best utility in stable world.

Action gives better results for individuals but gives instability.

Induction over steps of algorithm.

Proofs carefully use definition:

Optimality proof:
contradiction of the existence of a better pairing.

29 / 29

Takeaways.

Analysis of cool algorithm with interesting goal: stability.

“Economic”: different utilities.

Definition of optimality: best utility in stable world.

Action gives better results for individuals but gives instability.

Induction over steps of algorithm.

Proofs carefully use definition:
Optimality proof:

contradiction of the existence of a better pairing.

29 / 29

