Review.

Theory: If you drink alcohol you must be at least 18. Which cards do you turn over? Drink Alcohol \Rightarrow " \geq 18" "< 18" \Rightarrow Don't Drink Alcohol. Contrapositive. (A) (B) (C) and/or (D)? Propositional Forms: $\land, \lor, \neg, P \Rightarrow Q \equiv \neg P \lor Q$. Truth Table. Putting together identities. (E.g., cases, substitution.)

Predicates, P(x), and quantifiers. $\forall x, P(x)$. DeMorgan's: $\neg (P \lor Q) \equiv \neg P \land \neg Q$. $\neg \forall x, P(x) \equiv \exists x, \neg P(x)$.

Divides.

ab means

(A) a divides b.

- (B) There exists $k \in \mathbb{N}$, with a = kb.
- (C) There exists $k \in \mathbb{N}$, with k = ka.

(D) b divides a.

CS70: Lecture 2. Outline.

Today: Proofs!!! 1. By Example. 2. Direct. (Prove $P \implies Q$.) 3. by Contraposition (Prove $P \implies Q$) 4. by Contradiction (Prove *P*.) 5. by Cases If time: discuss induction.

Direct Proof.

```
Theorem: For any a, b, c \in Z, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

b = aq and c = aq' where q, q' \in Z

b-c = aq - aq' = a(q-q') Done?

(b-c) = a(q-q') and (q-q') is an integer so by definition of divides

a|(b-c) 

Works for \forall a, b, c?

Argument applies to every a, b, c \in Z.

Used distributive property and definition of divides.

Direct Proof Form:

Goal: P \implies Q

Assume P.

...

Therefore Q.
```

Quick Background and Notation.

Integers closed under addition. $a, b \in Z \implies a+b \in Z$ a|b means "a divides b". 2|4? Yes! Since for q = 2, 4 = (2)2. 7|23? No! No q where true. 4|2? No! Formally: $a|b \iff \exists q \in Z$ where b = aq. 3|15 since for q = 5, 15 = 3(5). A natural number p > 1, is **prime** if it is divisible only by 1 and itself.

Another direct proof.

Let D_3 be the 3 digit natural numbers. Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n. $\forall n \in D_3, (11|alt. sum of digits of <math>n) \implies 11|n$ Examples: n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121. n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55) **Proof:** For $n \in D_3$, n = 100a + 10b + c, for some a, b, c. Assume: Alt. sum: a - b + c = 11k for some integer k. Add 99a + 11b to both sides. 100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)Left hand side is n, k + 9a + b is integer. $\implies 11|n$. Direct proof of $P \implies Q$: Assumed P: 11|a - b + c. Proved Q: 11|n.

The Converse

Thm: $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$ Is converse a theorem? $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ Yes? No?

Another Contraposition...

Another Direct Proof.

```
Theorem: \forall n \in D_3, (11|n) \implies (11|alt. sum of digits of n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \implies

99a + 11b + (a - b + c) = 11k \implies

a - b + c = 11k - 99a - 11b \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11(k - 9a - b) \implies

a - b + c = 11\ell where \ell = (k - 9a - b) \in Z

That is 11|alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff
```

Often works with arithmetic propertiesnot when multiplying by 0.

We have.

Theorem: $\forall n \in N'$, (11|alt. sum of digits of n) \iff (11|n)

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational. Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$. A simple property (equality) should always "not" hold. Proof by contradiction: **Theorem:** *P*. $\neg P \implies P_1 \cdots \implies R$ $\neg P \implies Q_1 \cdots \implies \neg R$ $\neg P \implies R \land \neg R \equiv False$ or $\neg P \implies False$ Contrapositive of $\neg P \implies False$ is *True* $\implies P$. Theorem *P* is true. And proven.

Proof by Contraposition

```
Thm: For n \in Z^+ and d|n. If n is odd then d is odd.

n = 2k + 1 and n = k'd. what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove P \implies Q.

Assume \neg Q

...and prove \neg P.

Conclusion: \neg Q \implies \neg P equivalent to P \implies Q.

Proof: Assume \neg Q: d is even. d = 2k.

d|n so we have

n = qd = q(2k) = 2(kq)

n is even. \neg P
```

Contradiction

Theorem: $\sqrt{2}$ is irrational. Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$. Reduced form: *a* and *b* have no common factors.

 $\sqrt{2}b = a$

```
2b^2 = a^2 = 4k^2
```

 a^2 is even $\implies a$ is even. a = 2k for some integer k

```
b^2 = 2k^2
```

 b^2 is even $\implies b$ is even. a and b have a common factor. Contradiction.

Proof by contradiction: example

Theorem: There are infinitely many primes. **Proof:**

► Assume finitely many primes: *p*₁,...,*p*_k.

Consider number

 $q = (p_1 \times p_2 \times \cdots p_k) + 1.$

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,
- $> \implies p|q-x \implies p \le q-x=1.$
- ▶ so $p \le 1$. (Contradicts *R*.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Proof by cases.

```
Theorem: There exist irrational x and y such that x^y is rational.
Let x = y = \sqrt{2}.
Case 1: x^y = \sqrt{2}^{\sqrt{2}} is rational. Done!
Case 2: \sqrt{2}^{\sqrt{2}} is irrational.

New values: x = \sqrt{2}^{\sqrt{2}}, y = \sqrt{2}.

x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} + \sqrt{2}} = \sqrt{2}^2 = 2.
```

Thus, we have irrational x and y with a rational x^{y} (i.e., 2). One of the cases is true so theorem holds. Question: Which case holds? Don't know!!!

Product of first k primes..

Did we prove?

"The product of the first k primes plus 1 is prime."

No.

> The chain of reasoning started with a false statement.

Consider example ..

- $\blacktriangleright 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- There is a prime *in between* 13 and q = 30031 that divides q.
- Proof assumed no primes in between p_k and q.

Be careful.

Theorem: $3 = 4$
Proof: Assume $3 = 4$.
Start with $12 = 12$.
Divide one side by 3 and the other by 4 to get $4 = 3$.
By commutativity theorem holds.
Don't assume what you want to prove!

Proof by cases.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma... **Lemma:** If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even. Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution. **Proof of lemma:** Assume a solution of the form a/b. $\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b⁵,

 $a^5 - ab^4 + b^5 = 0$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even +even = even. Not possible. Case 4: *a* even, *b* even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Be really careful!

Theorem: $1 = 2$ Proof: For $x = y$, we have	
$(x^2 - xy) = x^2 - y^2$	
x(x-y) = (x+y)(x-y)	
$\begin{array}{l} x = (x + y) \\ x = 2x \end{array}$	
1 = 2	
Poll: What is the problem?	
(A) Assumed what you were proving.	
(B) No problem. Its fine.	
(C) $x - y$ is zero.	
(D) Can't multiply by zero in a proof.	
Dividing by zero is no good. Multiplying by zero is wierdly cool!	
Also: Multiplying inequalities by a negative.	
$P \Longrightarrow Q$ does not mean $Q \Longrightarrow P$.	

Summary: Note 2.

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q. By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction: To Prove: P Assume $\neg P$. Prove False.

By Cases: informal. Universal: show that statement holds in all cases. Existence: used cases where one is true. Either $\sqrt{2}$ and $\sqrt{2}$ worked. or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving! Don't assume the theorem. Divide by zero.Watch converse. ...

A formula.

Teacher: Hello class. Teacher: Please add the numbers from 1 to 100. Gauss: It's $\frac{(100)(101)}{2}$ or 5050! Five year old Gauss Theorem: $\forall (n \in \mathbf{N}) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

It is a statement about all natural numbers.

 $\forall (n \in N) : P(n).$

P(n) is " $\sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$ ".

- Principle of Induction:
- Prove P(0).
- Assume P(k), "Induction Hypothesis"
- ▶ Prove *P*(*k*+1). "Induction Step."

CS70: Note 3. Induction!

Poll. What's the biggest number?

(A) 100

(B) 101

(C) n+1

(D) infinity.

(E) This is about the "recursive leap of faith."

- 1. The natural numbers.
- 2. 5 year old Gauss.
- 3. .. and Induction.
- 4. Simple Proof.

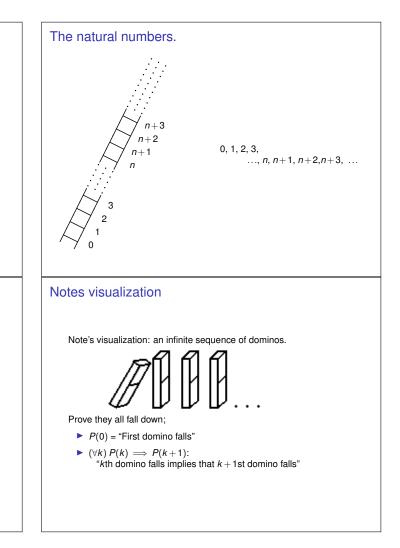
Gauss induction proof.

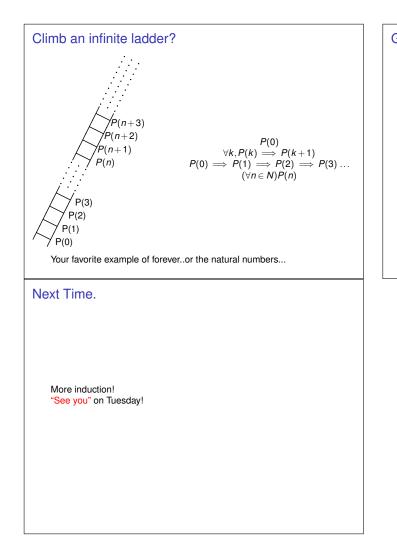
1

Theorem: For all natural numbers $n, 0+1+2\cdots n = \frac{n(n+1)}{2}$ Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes. Induction Step: Show $\forall k \ge 0, P(k) \implies P(k+1)$ Induction Hypothesis: $P(k) = 1 + \cdots + k = \frac{k(k+1)}{2}$

$$+\dots+k+(k+1) = \frac{k(k+1)}{2}+(k+1)$$
$$= \frac{k^2+k+2(k+1)}{2}$$
$$= \frac{k^2+3k+2}{2}$$
$$= \frac{(k+1)(k+2)}{2}$$

P(k+1)! By principle of induction...





```
Gauss and Induction

Child Gauss: (\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2}) Proof?

Idea: assume predicate P(n) for n = k. P(k) is \sum_{i=1}^{k} i = \frac{k(k+1)}{2}.

Is predicate, P(n) true for n = k + 1?

\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.

How about k + 2. Same argument starting at k + 1 works!

Induction Step. P(k) \implies P(k+1).

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is \sum_{i=0}^{n} i = 0 = \frac{(0)(0+1)}{2} Base Case.

Statement is true for n = 0 P(0) is true

plus inductive step \implies true for n = 1 (P(0) \land (P(0) \Rightarrow P(1))) \Rightarrow P(1)

plus inductive step \implies true for n = 2 (P(1) \land (P(1) \Rightarrow P(2)) \Rightarrow P(2)

...

true for n = k \implies true for n = k + 1 (P(k) \land (P(k) \Rightarrow P(k+1))) \Rightarrow P(k+1)

...

Predicate, P(n), True for all natural numbers! Proof by Induction.
```

Induction

The canonical way of proving statements of the form

 $(\forall k \in N)(P(k))$

- For all natural numbers $n, 1+2\cdots n = \frac{n(n+1)}{2}$.
- For all $n \in N$, $n^3 n$ is divisible by 3.
- ► The sum of the first *n* odd integers is a perfect square.

The basic form

- Prove P(0). "Base Case".
- $\blacktriangleright P(k) \Longrightarrow P(k+1)$
 - Assume P(k), "Induction Hypothesis"
 - Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!Get to use P(k) to prove P(k+1)!!!!