
Today.

Last time:

Shared (and sort of kept) secrets.

Today: Errors
Tolerate Loss: erasure codes.
Tolerate corruption!

Today.

Last time:
Shared (and sort of kept) secrets.

Today: Errors
Tolerate Loss: erasure codes.
Tolerate corruption!

Today.

Last time:
Shared (and sort of kept) secrets.

Today: Errors
Tolerate Loss: erasure codes.
Tolerate corruption!

Today.

Last time:
Shared (and sort of kept) secrets.

Today: Errors

Tolerate Loss: erasure codes.
Tolerate corruption!

Today.

Last time:
Shared (and sort of kept) secrets.

Today: Errors
Tolerate Loss: erasure codes.

Tolerate corruption!

Today.

Last time:
Shared (and sort of kept) secrets.

Today: Errors
Tolerate Loss: erasure codes.
Tolerate corruption!

Today.

Last time:
Shared (and sort of kept) secrets.

Today: Errors
Tolerate Loss: erasure codes.
Tolerate corruption!

Poll

Line: y = mx + b

Poly: ”y” = P(x) = ad xd + ad−1xd−1...a0x0

Everything below is true. Mark if you know it and perhaps why it
is true.

(A) Two points determine a line: mx + b
(B) A root of P(x), is a where P(a) = 0.
(C) A degree d polynomial has at most d roots.
(D) Arithmetic modulo a prime p is a ”field”.

(A) If a polynomial has a root at a, P(x) = Q(x)(x−a).
(B) A line has at most one root, if not always zero.
(C) System: y1 = mx1 + b,y2 = mx2 + b has unique solution (m, b.)
(D) Degree of a polyomial P(x)2 is 2d if P(x) is degree d .

(C) may not be true.

Poll

Line: y = mx + b

Poly: ”y” = P(x) = ad xd + ad−1xd−1...a0x0

Everything below is true. Mark if you know it and perhaps why it
is true.

(A) Two points determine a line: mx + b
(B) A root of P(x), is a where P(a) = 0.
(C) A degree d polynomial has at most d roots.
(D) Arithmetic modulo a prime p is a ”field”.

(A) If a polynomial has a root at a, P(x) = Q(x)(x−a).
(B) A line has at most one root, if not always zero.
(C) System: y1 = mx1 + b,y2 = mx2 + b has unique solution (m, b.)
(D) Degree of a polyomial P(x)2 is 2d if P(x) is degree d .

(C) may not be true.

Poll

Line: y = mx + b

Poly: ”y” = P(x) = ad xd + ad−1xd−1...a0x0

Everything below is true. Mark if you know it and perhaps why it
is true.

(A) Two points determine a line: mx + b
(B) A root of P(x), is a where P(a) = 0.
(C) A degree d polynomial has at most d roots.
(D) Arithmetic modulo a prime p is a ”field”.

(A) If a polynomial has a root at a, P(x) = Q(x)(x−a).
(B) A line has at most one root, if not always zero.
(C) System: y1 = mx1 + b,y2 = mx2 + b has unique solution (m, b.)
(D) Degree of a polyomial P(x)2 is 2d if P(x) is degree d .

(C) may not be true.

Poll

Line: y = mx + b

Poly: ”y” = P(x) = ad xd + ad−1xd−1...a0x0

Everything below is true. Mark if you know it and perhaps why it
is true.

(A) Two points determine a line: mx + b
(B) A root of P(x), is a where P(a) = 0.
(C) A degree d polynomial has at most d roots.
(D) Arithmetic modulo a prime p is a ”field”.

(A) If a polynomial has a root at a, P(x) = Q(x)(x−a).
(B) A line has at most one root, if not always zero.
(C) System: y1 = mx1 + b,y2 = mx2 + b has unique solution (m, b.)
(D) Degree of a polyomial P(x)2 is 2d if P(x) is degree d .

(C) may not be true.

Poll

Line: y = mx + b

Poly: ”y” = P(x) = ad xd + ad−1xd−1...a0x0

Everything below is true. Mark if you know it and perhaps why it
is true.

(A) Two points determine a line: mx + b
(B) A root of P(x), is a where P(a) = 0.
(C) A degree d polynomial has at most d roots.
(D) Arithmetic modulo a prime p is a ”field”.

(A) If a polynomial has a root at a, P(x) = Q(x)(x−a).
(B) A line has at most one root, if not always zero.
(C) System: y1 = mx1 + b,y2 = mx2 + b has unique solution (m, b.)
(D) Degree of a polyomial P(x)2 is 2d if P(x) is degree d .

(C) may not be true.

The mathematics.

There is a unique polynomial of degree d that contains any d + 1
points.

Assumption: a field, in particular, arithmetic mod p.

Big Idea:

A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean?
Many representations of a polynomial!
One coefficient represention.
Many, many point,value representations.

Some details:
Degree d generally degree “at most” d .

(example: choose 10 points on a line.)
Arithmetic (mod p) =⇒ work with O(logp) bit numbers.

The mathematics.

There is a unique polynomial of degree d that contains any d + 1
points.

Assumption: a field, in particular, arithmetic mod p.

Big Idea:

A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean?
Many representations of a polynomial!
One coefficient represention.
Many, many point,value representations.

Some details:
Degree d generally degree “at most” d .

(example: choose 10 points on a line.)
Arithmetic (mod p) =⇒ work with O(logp) bit numbers.

The mathematics.

There is a unique polynomial of degree d that contains any d + 1
points.

Assumption: a field, in particular, arithmetic mod p.

Big Idea:

A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean?
Many representations of a polynomial!
One coefficient represention.
Many, many point,value representations.

Some details:
Degree d generally degree “at most” d .

(example: choose 10 points on a line.)
Arithmetic (mod p) =⇒ work with O(logp) bit numbers.

The mathematics.

There is a unique polynomial of degree d that contains any d + 1
points.

Assumption: a field, in particular, arithmetic mod p.

Big Idea:

A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.

Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean?
Many representations of a polynomial!
One coefficient represention.
Many, many point,value representations.

Some details:
Degree d generally degree “at most” d .

(example: choose 10 points on a line.)
Arithmetic (mod p) =⇒ work with O(logp) bit numbers.

The mathematics.

There is a unique polynomial of degree d that contains any d + 1
points.

Assumption: a field, in particular, arithmetic mod p.

Big Idea:

A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean?
Many representations of a polynomial!
One coefficient represention.
Many, many point,value representations.

Some details:
Degree d generally degree “at most” d .

(example: choose 10 points on a line.)
Arithmetic (mod p) =⇒ work with O(logp) bit numbers.

The mathematics.

There is a unique polynomial of degree d that contains any d + 1
points.

Assumption: a field, in particular, arithmetic mod p.

Big Idea:

A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean?
Many representations of a polynomial!
One coefficient represention.
Many, many point,value representations.

Some details:
Degree d generally degree “at most” d .

(example: choose 10 points on a line.)
Arithmetic (mod p) =⇒ work with O(logp) bit numbers.

The mathematics.

There is a unique polynomial of degree d that contains any d + 1
points.

Assumption: a field, in particular, arithmetic mod p.

Big Idea:

A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points determines the polynomial.

Stare at the above.

What does it mean?
Many representations of a polynomial!
One coefficient represention.
Many, many point,value representations.

Some details:
Degree d generally degree “at most” d .

(example: choose 10 points on a line.)
Arithmetic (mod p) =⇒ work with O(logp) bit numbers.

The mathematics.

There is a unique polynomial of degree d that contains any d + 1
points.

Assumption: a field, in particular, arithmetic mod p.

Big Idea:

A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean?

Many representations of a polynomial!
One coefficient represention.
Many, many point,value representations.

Some details:
Degree d generally degree “at most” d .

(example: choose 10 points on a line.)
Arithmetic (mod p) =⇒ work with O(logp) bit numbers.

The mathematics.

There is a unique polynomial of degree d that contains any d + 1
points.

Assumption: a field, in particular, arithmetic mod p.

Big Idea:

A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean?
Many representations of a polynomial!

One coefficient represention.
Many, many point,value representations.

Some details:
Degree d generally degree “at most” d .

(example: choose 10 points on a line.)
Arithmetic (mod p) =⇒ work with O(logp) bit numbers.

The mathematics.

There is a unique polynomial of degree d that contains any d + 1
points.

Assumption: a field, in particular, arithmetic mod p.

Big Idea:

A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean?
Many representations of a polynomial!
One coefficient represention.

Many, many point,value representations.

Some details:
Degree d generally degree “at most” d .

(example: choose 10 points on a line.)
Arithmetic (mod p) =⇒ work with O(logp) bit numbers.

The mathematics.

There is a unique polynomial of degree d that contains any d + 1
points.

Assumption: a field, in particular, arithmetic mod p.

Big Idea:

A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean?
Many representations of a polynomial!
One coefficient represention.
Many, many point,value representations.

Some details:
Degree d generally degree “at most” d .

(example: choose 10 points on a line.)
Arithmetic (mod p) =⇒ work with O(logp) bit numbers.

The mathematics.

There is a unique polynomial of degree d that contains any d + 1
points.

Assumption: a field, in particular, arithmetic mod p.

Big Idea:

A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean?
Many representations of a polynomial!
One coefficient represention.
Many, many point,value representations.

Some details:
Degree d generally degree “at most” d .

(example: choose 10 points on a line.)
Arithmetic (mod p) =⇒ work with O(logp) bit numbers.

The mathematics.

There is a unique polynomial of degree d that contains any d + 1
points.

Assumption: a field, in particular, arithmetic mod p.

Big Idea:

A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean?
Many representations of a polynomial!
One coefficient represention.
Many, many point,value representations.

Some details:

Degree d generally degree “at most” d .
(example: choose 10 points on a line.)

Arithmetic (mod p) =⇒ work with O(logp) bit numbers.

The mathematics.

There is a unique polynomial of degree d that contains any d + 1
points.

Assumption: a field, in particular, arithmetic mod p.

Big Idea:

A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean?
Many representations of a polynomial!
One coefficient represention.
Many, many point,value representations.

Some details:
Degree d generally degree “at most” d .

(example: choose 10 points on a line.)
Arithmetic (mod p) =⇒ work with O(logp) bit numbers.

The mathematics.

There is a unique polynomial of degree d that contains any d + 1
points.

Assumption: a field, in particular, arithmetic mod p.

Big Idea:

A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean?
Many representations of a polynomial!
One coefficient represention.
Many, many point,value representations.

Some details:
Degree d generally degree “at most” d .

(example: choose 10 points on a line.)

Arithmetic (mod p) =⇒ work with O(logp) bit numbers.

The mathematics.

There is a unique polynomial of degree d that contains any d + 1
points.

Assumption: a field, in particular, arithmetic mod p.

Big Idea:

A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points determines the polynomial.

Stare at the above. What does it mean?
Many representations of a polynomial!
One coefficient represention.
Many, many point,value representations.

Some details:
Degree d generally degree “at most” d .

(example: choose 10 points on a line.)
Arithmetic (mod p) =⇒ work with O(logp) bit numbers.

Proof sketches.

Property 2 A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.

Any set of d + 1 points uniquely determines the polynomial.

Existence: Lagrange Intropolation.
Degree d , ∆i (x) polynomials.

factors of (x−xj) to zero out at xj 6= xi .
Multiply by zero. My love is won.

Combine.

Uniqueness:
Property 1 A non-zero degree d polynomial has at most d roots.

Factoring: P(x) with roots r1, . . . , rd
=⇒ P(x) = c(x− r0)(x− r1) . . .(x− rd).

Love me some contradiction!
Two polynomials: P(x),Q(x), P(x)−Q(x) has too many roots.

Proof sketches.

Property 2 A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points uniquely determines the polynomial.

Existence: Lagrange Intropolation.
Degree d , ∆i (x) polynomials.

factors of (x−xj) to zero out at xj 6= xi .
Multiply by zero. My love is won.

Combine.

Uniqueness:
Property 1 A non-zero degree d polynomial has at most d roots.

Factoring: P(x) with roots r1, . . . , rd
=⇒ P(x) = c(x− r0)(x− r1) . . .(x− rd).

Love me some contradiction!
Two polynomials: P(x),Q(x), P(x)−Q(x) has too many roots.

Proof sketches.

Property 2 A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points uniquely determines the polynomial.

Existence: Lagrange Intropolation.
Degree d , ∆i (x) polynomials.

factors of (x−xj) to zero out at xj 6= xi .
Multiply by zero. My love is won.

Combine.

Uniqueness:
Property 1 A non-zero degree d polynomial has at most d roots.

Factoring: P(x) with roots r1, . . . , rd
=⇒ P(x) = c(x− r0)(x− r1) . . .(x− rd).

Love me some contradiction!
Two polynomials: P(x),Q(x), P(x)−Q(x) has too many roots.

Proof sketches.

Property 2 A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points uniquely determines the polynomial.

Existence: Lagrange Intropolation.

Degree d , ∆i (x) polynomials.
factors of (x−xj) to zero out at xj 6= xi .
Multiply by zero. My love is won.

Combine.

Uniqueness:
Property 1 A non-zero degree d polynomial has at most d roots.

Factoring: P(x) with roots r1, . . . , rd
=⇒ P(x) = c(x− r0)(x− r1) . . .(x− rd).

Love me some contradiction!
Two polynomials: P(x),Q(x), P(x)−Q(x) has too many roots.

Proof sketches.

Property 2 A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points uniquely determines the polynomial.

Existence: Lagrange Intropolation.
Degree d , ∆i (x) polynomials.

factors of (x−xj) to zero out at xj 6= xi .
Multiply by zero. My love is won.

Combine.

Uniqueness:
Property 1 A non-zero degree d polynomial has at most d roots.

Factoring: P(x) with roots r1, . . . , rd
=⇒ P(x) = c(x− r0)(x− r1) . . .(x− rd).

Love me some contradiction!
Two polynomials: P(x),Q(x), P(x)−Q(x) has too many roots.

Proof sketches.

Property 2 A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points uniquely determines the polynomial.

Existence: Lagrange Intropolation.
Degree d , ∆i (x) polynomials.

factors of (x−xj) to zero out at xj 6= xi .

Multiply by zero. My love is won.
Combine.

Uniqueness:
Property 1 A non-zero degree d polynomial has at most d roots.

Factoring: P(x) with roots r1, . . . , rd
=⇒ P(x) = c(x− r0)(x− r1) . . .(x− rd).

Love me some contradiction!
Two polynomials: P(x),Q(x), P(x)−Q(x) has too many roots.

Proof sketches.

Property 2 A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points uniquely determines the polynomial.

Existence: Lagrange Intropolation.
Degree d , ∆i (x) polynomials.

factors of (x−xj) to zero out at xj 6= xi .
Multiply by zero. My love is won.

Combine.

Uniqueness:
Property 1 A non-zero degree d polynomial has at most d roots.

Factoring: P(x) with roots r1, . . . , rd
=⇒ P(x) = c(x− r0)(x− r1) . . .(x− rd).

Love me some contradiction!
Two polynomials: P(x),Q(x), P(x)−Q(x) has too many roots.

Proof sketches.

Property 2 A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points uniquely determines the polynomial.

Existence: Lagrange Intropolation.
Degree d , ∆i (x) polynomials.

factors of (x−xj) to zero out at xj 6= xi .
Multiply by zero. My love is won.

Combine.

Uniqueness:

Property 1 A non-zero degree d polynomial has at most d roots.
Factoring: P(x) with roots r1, . . . , rd

=⇒ P(x) = c(x− r0)(x− r1) . . .(x− rd).

Love me some contradiction!
Two polynomials: P(x),Q(x), P(x)−Q(x) has too many roots.

Proof sketches.

Property 2 A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points uniquely determines the polynomial.

Existence: Lagrange Intropolation.
Degree d , ∆i (x) polynomials.

factors of (x−xj) to zero out at xj 6= xi .
Multiply by zero. My love is won.

Combine.

Uniqueness:
Property 1 A non-zero degree d polynomial has at most d roots.

Factoring: P(x) with roots r1, . . . , rd
=⇒ P(x) = c(x− r0)(x− r1) . . .(x− rd).

Love me some contradiction!
Two polynomials: P(x),Q(x), P(x)−Q(x) has too many roots.

Proof sketches.

Property 2 A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points uniquely determines the polynomial.

Existence: Lagrange Intropolation.
Degree d , ∆i (x) polynomials.

factors of (x−xj) to zero out at xj 6= xi .
Multiply by zero. My love is won.

Combine.

Uniqueness:
Property 1 A non-zero degree d polynomial has at most d roots.

Factoring: P(x) with roots r1, . . . , rd

=⇒ P(x) = c(x− r0)(x− r1) . . .(x− rd).

Love me some contradiction!
Two polynomials: P(x),Q(x), P(x)−Q(x) has too many roots.

Proof sketches.

Property 2 A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points uniquely determines the polynomial.

Existence: Lagrange Intropolation.
Degree d , ∆i (x) polynomials.

factors of (x−xj) to zero out at xj 6= xi .
Multiply by zero. My love is won.

Combine.

Uniqueness:
Property 1 A non-zero degree d polynomial has at most d roots.

Factoring: P(x) with roots r1, . . . , rd
=⇒ P(x) = c(x− r0)(x− r1) . . .(x− rd).

Love me some contradiction!
Two polynomials: P(x),Q(x), P(x)−Q(x) has too many roots.

Proof sketches.

Property 2 A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points uniquely determines the polynomial.

Existence: Lagrange Intropolation.
Degree d , ∆i (x) polynomials.

factors of (x−xj) to zero out at xj 6= xi .
Multiply by zero. My love is won.

Combine.

Uniqueness:
Property 1 A non-zero degree d polynomial has at most d roots.

Factoring: P(x) with roots r1, . . . , rd
=⇒ P(x) = c(x− r0)(x− r1) . . .(x− rd).

Love me some contradiction!

Two polynomials: P(x),Q(x), P(x)−Q(x) has too many roots.

Proof sketches.

Property 2 A polynomial: P(x) = ad xd + · · ·a0 has d + 1 coefficients.
Any set of d + 1 points uniquely determines the polynomial.

Existence: Lagrange Intropolation.
Degree d , ∆i (x) polynomials.

factors of (x−xj) to zero out at xj 6= xi .
Multiply by zero. My love is won.

Combine.

Uniqueness:
Property 1 A non-zero degree d polynomial has at most d roots.

Factoring: P(x) with roots r1, . . . , rd
=⇒ P(x) = c(x− r0)(x− r1) . . .(x− rd).

Love me some contradiction!
Two polynomials: P(x),Q(x), P(x)−Q(x) has too many roots.

Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a finite field denoted by Fm or
GF (m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.

Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a finite field denoted by Fm or
GF (m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.

Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a finite field denoted by Fm or
GF (m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.

Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a finite field denoted by Fm or
GF (m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.

Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a finite field denoted by Fm or
GF (m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.

Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a finite field denoted by Fm or
GF (m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.

Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a finite field denoted by Fm or
GF (m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Two points make a line: the value of one point allows any y-intercept.

3 kids hand out 3 points. Any two know the line.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:

Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Two points make a line: the value of one point allows any y-intercept.

3 kids hand out 3 points. Any two know the line.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Two points make a line: the value of one point allows any y-intercept.

3 kids hand out 3 points. Any two know the line.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Two points make a line: the value of one point allows any y-intercept.

3 kids hand out 3 points. Any two know the line.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Two points make a line: the value of one point allows any y-intercept.

3 kids hand out 3 points. Any two know the line.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Two points make a line: the value of one point allows any y-intercept.

3 kids hand out 3 points. Any two know the line.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Two points make a line: the value of one point allows any y-intercept.

3 kids hand out 3 points. Any two know the line.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.

Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Two points make a line: the value of one point allows any y-intercept.

3 kids hand out 3 points. Any two know the line.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.

Knowing ≤ k −1 pts, any P(0) is possible.

Two points make a line: the value of one point allows any y-intercept.

3 kids hand out 3 points. Any two know the line.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Two points make a line: the value of one point allows any y-intercept.

3 kids hand out 3 points. Any two know the line.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Two points make a line: the value of one point allows any y-intercept.

3 kids hand out 3 points. Any two know the line.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree ≤ d over
GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Roubustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.

Two points make a line: the value of one point allows any y-intercept.

3 kids hand out 3 points. Any two know the line.

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.
Chebyshev said it,
And I say it again,
There is always a prime
Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.
Chebyshev said it,
And I say it again,
There is always a prime
Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.
Chebyshev said it,

And I say it again,
There is always a prime
Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.
Chebyshev said it,
And I say it again,

There is always a prime
Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.
Chebyshev said it,
And I say it again,
There is always a prime

Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.
Chebyshev said it,
And I say it again,
There is always a prime
Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.
Chebyshev said it,
And I say it again,
There is always a prime
Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.
Chebyshev said it,
And I say it again,
There is always a prime
Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.
Chebyshev said it,
And I say it again,
There is always a prime
Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.
Chebyshev said it,
And I say it again,
There is always a prime
Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.
Chebyshev said it,
And I say it again,
There is always a prime
Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

Runtime.

Runtime: polynomial in k , n, and logp.

1. Evaluate degree k −1 polynomial n times using logp-bit
numbers.

2. Reconstruct secret by solving system of k equations using
logp-bit arithmetic.

Runtime.

Runtime: polynomial in k , n, and logp.

1. Evaluate degree k −1 polynomial n times using logp-bit
numbers.

2. Reconstruct secret by solving system of k equations using
logp-bit arithmetic.

A bit more counting.

What is the number of degree d polynomials over GF (m)?

I md+1: d + 1 coefficients from {0, . . . ,m−1}.
I md+1: d + 1 points with y -values from {0, . . . ,m−1}

Infinite number for reals, rationals, complex numbers!

A bit more counting.

What is the number of degree d polynomials over GF (m)?

I md+1: d + 1 coefficients from {0, . . . ,m−1}.

I md+1: d + 1 points with y -values from {0, . . . ,m−1}

Infinite number for reals, rationals, complex numbers!

A bit more counting.

What is the number of degree d polynomials over GF (m)?

I md+1: d + 1 coefficients from {0, . . . ,m−1}.
I md+1: d + 1 points with y -values from {0, . . . ,m−1}

Infinite number for reals, rationals, complex numbers!

A bit more counting.

What is the number of degree d polynomials over GF (m)?

I md+1: d + 1 coefficients from {0, . . . ,m−1}.
I md+1: d + 1 points with y -values from {0, . . . ,m−1}

Infinite number for reals, rationals, complex numbers!

Secret Sharing.

n people, k is enough.

(A) The modulus needs to be at least n + 1.
(B) The modulus needs to be at least k .
(C) Use degree k polynomial, hand out n points.
(D) Use degree n polynomial, hand out k points.
(E) Use degree k −1 polynomial, hand out n points.
(F) The modulus needs to be at least 2s, where s is value of secret.
(G) The modulus needs to be at least 2s, where s is size of secret.

(A), (B), (E), (F)

Secret Sharing.

n people, k is enough.

(A) The modulus needs to be at least n + 1.
(B) The modulus needs to be at least k .
(C) Use degree k polynomial, hand out n points.
(D) Use degree n polynomial, hand out k points.
(E) Use degree k −1 polynomial, hand out n points.
(F) The modulus needs to be at least 2s, where s is value of secret.
(G) The modulus needs to be at least 2s, where s is size of secret.

(A), (B), (E), (F)

Erasure Codes.

Satellite

GPS device

3 packet message.

So send 6!

Lose 3 out 6 packets.

1 2 3

1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3.

Erasure Codes.

Satellite

GPS device

3 packet message.

So send 6!

Lose 3 out 6 packets.

1 2 3

1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3.

Erasure Codes.

Satellite

GPS device

3 packet message.

So send 6!

Lose 3 out 6 packets.

1 2 3

1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3.

Erasure Codes.

Satellite

GPS device

3 packet message. So send 6!

Lose 3 out 6 packets.

1 2 3 1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3.

Erasure Codes.

Satellite

GPS device

3 packet message. So send 6!

Lose 3 out 6 packets.

1 2 3 1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3.

Erasure Codes.

Satellite

GPS device

3 packet message. So send 6!

Lose 3 out 6 packets.

1 2 3 1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3.

Erasure Codes.

Satellite

GPS device

3 packet message. So send 6!

Lose 3 out 6 packets.

1 2 3 1 2 3

1 2 3 1 2 3

Gets packets 1,1,and 3.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets

should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values

allow reconstruction of degree n−1 polynomial.

Alright!!!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!

!!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!

!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!

!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!

!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!!

!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!!!

Use polynomials.

Solution Idea.

n packet message, channel that loses k packets.

Must send n + k packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree n−1 polynomial.

Alright!!!!!!

Use polynomials.

The Scheme

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m1 . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!

The Scheme

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m1 . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!

The Scheme

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m1 . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!

The Scheme

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m1 . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!

The Scheme

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m1 . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!

The Scheme

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m1 . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...

and message!

The Scheme

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n−1 polynomial determined by any n points!

Erasure Coding Scheme: message = m0,m1 . . . ,mn−1.

1. Choose prime p ≈ 2b for packet size b.

2. P(x) = mn−1xn−1 + · · ·m0 (mod p).

3. Send P(1), . . . ,P(n + k).

Any n of the n + k packets gives polynomial ...and message!

Erasure Codes.

Satellite

GPS device

n packet message.

So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

n packet message.

Optimal.

Erasure Codes.

Satellite

GPS device

n packet message.

So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

n packet message.

Optimal.

Erasure Codes.

Satellite

GPS device

n packet message.

So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

n packet message.

Optimal.

Erasure Codes.

Satellite

GPS device

n packet message. So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

n packet message.

Optimal.

Erasure Codes.

Satellite

GPS device

n packet message. So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

n packet message.

Optimal.

Erasure Codes.

Satellite

GPS device

n packet message. So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

n packet message.

Optimal.

Erasure Codes.

Satellite

GPS device

n packet message. So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

n packet message.

Optimal.

Erasure Codes.

Satellite

GPS device

n packet message. So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

n packet message.

Optimal.

Erasure Codes.

Satellite

GPS device

n packet message. So send n + k !

Lose k packets.

1 2
· · · · · ·

· · · n + k

1 2
· · · · · ·

· · · n + k

Any n packets is enough!

n packet message.

Optimal.

Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.
Coding: Each packet has size 1/n of the whole message.

Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.
Coding: Each packet has size 1/n of the whole message.

Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.
Coding: Each packet has size 1/n of the whole message.

Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.
Coding: Each packet has size 1/n of the whole message.

Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.
Coding: Each packet has size 1/n of the whole message.

Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.
Coding: Each packet has size 1/n of the whole message.

Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.

Coding: Each packet has size 1/n of the whole message.

Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.
Coding: Each packet has size 1/n of the whole message.

Information Theory.

Size: Can choose a prime between 2b−1 and 2b.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF (2n) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.
Coding: Each packet has size 1/n of the whole message.

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.

Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)

P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,

P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,

P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points.

Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why?

(0,P(0)) = (5,P(5)) (mod 5)

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x2 (mod 5)
P(1) = 1,P(2) = 4,P(3) = 9 = 4 (mod 5)

Send (0,P(0)) . . .(5,P(5)).

6 points. Better work modulo 7 at least!

Why? (0,P(0)) = (5,P(5)) (mod 5)

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7),

5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0.

a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7)

a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7)

a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1,

P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4,

and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send

Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(3) = 2a2 + 3a1 + a0 ≡ 4 (mod 7)

6a1 + 3a0 = 2 (mod 7), 5a1 + 4a0 = 0 (mod 7)

a1 = 2a0. a0 = 2 (mod 7) a1 = 4 (mod 7) a2 = 2 (mod 7)

P(x) = 2x2 + 4x + 2

P(1) = 1, P(2) = 4, and P(3) = 4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (2,4), (6,0)
Reconstruct?

Format: (i ,R(i)).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (2,4), (6,0)

Reconstruct?

Format: (i ,R(i)).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (2,4), (6,0)
Reconstruct?

Format: (i ,R(i)).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (2,4), (6,0)
Reconstruct?

Format: (i ,R(i)).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (2,4), (6,0)
Reconstruct?

Format: (i ,R(i)).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (2,4), (6,0)
Reconstruct?

Format: (i ,R(i)).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (2,4), (6,0)
Reconstruct?

Format: (i ,R(i)).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (2,4), (6,0)
Reconstruct?

Format: (i ,R(i)).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (2,4), (6,0)
Reconstruct?

Format: (i ,R(i)).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (2,4), (6,0)
Reconstruct?

Format: (i ,R(i)).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai

...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (2,4), (6,0)
Reconstruct?

Format: (i ,R(i)).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (2,4), (6,0)
Reconstruct?

Format: (i ,R(i)).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (2,4), (6,0)
Reconstruct?

Format: (i ,R(i)).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (2,4), (6,0)
Reconstruct?

Format: (i ,R(i)).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message?

P(1) = 1,P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (2,4), (6,0)
Reconstruct?

Format: (i ,R(i)).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,

P(2) = 4,P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (2,4), (6,0)
Reconstruct?

Format: (i ,R(i)).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,

P(3) = 4.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (2,4), (6,0)
Reconstruct?

Format: (i ,R(i)).

Lagrange or linear equations.

P(1) = a2 + a1 + a0 ≡ 1 (mod 7)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 7)

P(6) = 2a2 + 3a1 + a0 ≡ 0 (mod 7)

Channeling Sahai ...

P(x) = 2x2 + 4x + 2

Message? P(1) = 1,P(2) = 4,P(3) = 4.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

Remember the secret, s = 144, must be one of the possible values.

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

The other constraint: arithmetic system can represent 0,1,2,3,4.

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?

Larger than 144 and prime!

Remember the secret, s = 144, must be one of the possible values.

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

The other constraint: arithmetic system can represent 0,1,2,3,4.

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144

and prime!

Remember the secret, s = 144, must be one of the possible values.

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

The other constraint: arithmetic system can represent 0,1,2,3,4.

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

Remember the secret, s = 144, must be one of the possible values.

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

The other constraint: arithmetic system can represent 0,1,2,3,4.

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

Remember the secret, s = 144, must be one of the possible values.

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

The other constraint: arithmetic system can represent 0,1,2,3,4.

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

Remember the secret, s = 144, must be one of the possible values.

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

The other constraint: arithmetic system can represent 0,1,2,3,4.

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

Remember the secret, s = 144, must be one of the possible values.

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

The other constraint: arithmetic system can represent 0,1,2,3,4.

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

Remember the secret, s = 144, must be one of the possible values.

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?

Larger than 8 and prime!

The other constraint: arithmetic system can represent 0,1,2,3,4.

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

Remember the secret, s = 144, must be one of the possible values.

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?

Larger than 8 and prime!

The other constraint: arithmetic system can represent 0,1,2,3,4.

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

Remember the secret, s = 144, must be one of the possible values.

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8

and prime!

The other constraint: arithmetic system can represent 0,1,2,3,4.

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

Remember the secret, s = 144, must be one of the possible values.

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

The other constraint: arithmetic system can represent 0,1,2,3,4.

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

Remember the secret, s = 144, must be one of the possible values.

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

The other constraint: arithmetic system can represent 0,1,2,3,4.

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

Remember the secret, s = 144, must be one of the possible values.

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

The other constraint: arithmetic system can represent 0,1,2,3,4.

Send n packets b-bit packets, with k errors.

Modulus should be larger than n + k and also larger than 2b.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

Remember the secret, s = 144, must be one of the possible values.

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

The other constraint: arithmetic system can represent 0,1,2,3,4.

Send n packets b-bit packets, with k errors.
Modulus should be larger than n + k and also larger than 2b.

Polynomials.

I ..give Secret Sharing.

I ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts k packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.

Polynomials.

I ..give Secret Sharing.

I ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts k packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.

Polynomials.

I ..give Secret Sharing.

I ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts k packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.

Polynomials.

I ..give Secret Sharing.

I ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts k packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.

Polynomials.

I ..give Secret Sharing.

I ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts k packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.

Polynomials.

I ..give Secret Sharing.

I ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts k packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.

Error Correction

Satellite

GPS device

3 packet message.

Send 5.

Corrupts 1 packets.

A
1

B
2

C
3

D
1

E
2

A
1

C
3

D
1

E
2

B’
2

Error Correction

Satellite

GPS device

3 packet message.

Send 5.

Corrupts 1 packets.

A
1

B
2

C
3

D
1

E
2

A
1

C
3

D
1

E
2

B’
2

Error Correction

Satellite

GPS device

3 packet message.

Send 5.

Corrupts 1 packets.

A
1

B
2

C
3

D
1

E
2

A
1

C
3

D
1

E
2

B’
2

Error Correction

Satellite

GPS device

3 packet message. Send 5.

Corrupts 1 packets.

A
1

B
2

C
3

D
1

E
2

A
1

C
3

D
1

E
2

B’
2

Error Correction

Satellite

GPS device

3 packet message. Send 5.

Corrupts 1 packets.

A
1

B
2

C
3

D
1

E
2

A
1

C
3

D
1

E
2

B’
2

Error Correction

Satellite

GPS device

3 packet message. Send 5.

Corrupts 1 packets.

A
1

B
2

C
3

D
1

E
2

A
1

C
3

D
1

E
2

B’
2

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.

I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,

(2) P(x) is unique degree n−1 polynomial
that contains ≥ n + k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n + 2k).

After noisy channel: Recieve values R(1), . . . ,R(n + 2k).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Properties: proof.
P(x): degree n−1 polynomial.

Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)

Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)

At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,

(2) P(x) is unique degree n−1 polynomial
that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:

(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure.

Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.

(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.

Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.

P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.

Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k .

P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.

Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k .

H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.

Points contained by both : ≥ n. ≥ P−H Collisions.
=⇒ Q(i) = P(i) at n points.

=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n.

≥ P−H Collisions.
=⇒ Q(i) = P(i) at n points.

=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.

=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Properties: proof.
P(x): degree n−1 polynomial.
Send P(1), . . . ,P(n + 2k)
Receive R(1), . . . ,R(n + 2k)
At most k i ’s where P(i) 6= R(i).

Properties:
(1) P(i) = R(i) for at least n + k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n + k received points.

Proof:
(1) Sure. Only k corruptions.
(2) Degree n−1 polynomial Q(x) consistent with n + k points.
Q(x) agrees with R(i), n + k times.
P(x) agrees with R(i), n + k times.
Total points contained by both: 2n + 2k . P Pigeons.
Total points to choose from : n + 2k . H Holes.
Points contained by both : ≥ n. ≥ P−H Collisions.

=⇒ Q(i) = P(i) at n points.
=⇒ Q(x) = P(x).

Example.

Message: 3,0,6.

Reed Solomon Code: P(x) = x2 + x + 1 (mod 7) has
P(1) = 3,P(2) = 0,P(3) = 6 modulo 7.

Send: P(1) = 3,P(2) = 0,P(3) = 6,P(4) = 0,P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Example.

Message: 3,0,6.

Reed Solomon Code: P(x) = x2 + x + 1 (mod 7) has
P(1) = 3,P(2) = 0,P(3) = 6 modulo 7.

Send: P(1) = 3,P(2) = 0,P(3) = 6,P(4) = 0,P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Example.

Message: 3,0,6.

Reed Solomon Code: P(x) = x2 + x + 1 (mod 7) has
P(1) = 3,P(2) = 0,P(3) = 6 modulo 7.

Send: P(1) = 3,P(2) = 0,P(3) = 6,

P(4) = 0,P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Example.

Message: 3,0,6.

Reed Solomon Code: P(x) = x2 + x + 1 (mod 7) has
P(1) = 3,P(2) = 0,P(3) = 6 modulo 7.

Send: P(1) = 3,P(2) = 0,P(3) = 6,P(4) = 0,P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Example.

Message: 3,0,6.

Reed Solomon Code: P(x) = x2 + x + 1 (mod 7) has
P(1) = 3,P(2) = 0,P(3) = 6 modulo 7.

Send: P(1) = 3,P(2) = 0,P(3) = 6,P(4) = 0,P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Example.

Message: 3,0,6.

Reed Solomon Code: P(x) = x2 + x + 1 (mod 7) has
P(1) = 3,P(2) = 0,P(3) = 6 modulo 7.

Send: P(1) = 3,P(2) = 0,P(3) = 6,P(4) = 0,P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Example.

Message: 3,0,6.

Reed Solomon Code: P(x) = x2 + x + 1 (mod 7) has
P(1) = 3,P(2) = 0,P(3) = 6 modulo 7.

Send: P(1) = 3,P(2) = 0,P(3) = 6,P(4) = 0,P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,
1. there is unique degree n−1 polynomial Q(x) that fits n of

them
2. and where Q(x) is consistent with n + k points

=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.

Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,
1. there is unique degree n−1 polynomial Q(x) that fits n of

them
2. and where Q(x) is consistent with n + k points

=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.

If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,
1. there is unique degree n−1 polynomial Q(x) that fits n of

them
2. and where Q(x) is consistent with n + k points

=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,
1. there is unique degree n−1 polynomial Q(x) that fits n of

them
2. and where Q(x) is consistent with n + k points

=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,
1. there is unique degree n−1 polynomial Q(x) that fits n of

them
2. and where Q(x) is consistent with n + k points

=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n + k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,
1. there is unique degree n−1 polynomial Q(x) that fits n of

them

2. and where Q(x) is consistent with n + k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,
1. there is unique degree n−1 polynomial Q(x) that fits n of

them
2. and where Q(x) is consistent with n + k points

=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,
1. there is unique degree n−1 polynomial Q(x) that fits n of

them
2. and where Q(x) is consistent with n + k points

=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n + k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n + k of the total points.
If yes, output Q(x).

I For subset of n + k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n + k pts,
1. there is unique degree n−1 polynomial Q(x) that fits n of

them
2. and where Q(x) is consistent with n + k points

=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

4p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve..no consistent solution!
Assume point 2 is wrong and solve...consistent solution!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

4p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve..no consistent solution!
Assume point 2 is wrong and solve...consistent solution!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

4p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve..no consistent solution!
Assume point 2 is wrong and solve...consistent solution!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

4p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong

and solve..no consistent solution!
Assume point 2 is wrong and solve...consistent solution!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

4p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve..

no consistent solution!
Assume point 2 is wrong and solve...consistent solution!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

4p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve..no consistent solution!

Assume point 2 is wrong and solve...consistent solution!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

4p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve..no consistent solution!
Assume point 2 is wrong

and solve...consistent solution!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

4p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve..no consistent solution!
Assume point 2 is wrong and solve...

consistent solution!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

All equations..

p2 + p1 + p0 ≡ 3 (mod 7)

4p2 + 2p1 + p0 ≡ 1 (mod 7)

2p2 + 3p1 + p0 ≡ 6 (mod 7)

2p2 + 4p1 + p0 ≡ 0 (mod 7)

4p2 + 5p1 + p0 ≡ 3 (mod 7)

Assume point 1 is wrong and solve..no consistent solution!
Assume point 2 is wrong and solve...consistent solution!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???
Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???
Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???
Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???
Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!!

.... Where???
Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???

Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???
Could be anywhere!!!

...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???
Could be anywhere!!! ...so try everywhere.

Runtime:
(n+2k

k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???
Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???
Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

In general..

P(x) = pn−1xn−1 + · · ·p0 and receive R(1), . . .R(m = n + 2k).

pn−1 + · · ·p0 ≡ R(1) (mod p)

pn−12n−1 + · · ·p0 ≡ R(2) (mod p)

·
pn−1in−1 + · · ·p0 ≡ R(i) (mod p)

·
pn−1(m)n−1 + · · ·p0 ≡ R(m) (mod p)

Error!! Where???
Could be anywhere!!! ...so try everywhere.
Runtime:

(n+2k
k

)
possibilitities.

Something like (n/k)k ...Exponential in k !.

How do we find where the bad packets are efficiently?!?!?!

Ditty...

Oh where, Oh where

has my little dog gone?
Oh where, oh where can he be

With his ears cut short
And his tail cut long
Oh where, oh where can he be?

Oh where, Oh where
have my packets gone.. wrong?
Oh where, oh where do they not fit.

With the polynomial well put
But the channel a bit wrong
Where, oh where do we look?

Ditty...

Oh where, Oh where
has my little dog gone?

Oh where, oh where can he be

With his ears cut short
And his tail cut long
Oh where, oh where can he be?

Oh where, Oh where
have my packets gone.. wrong?
Oh where, oh where do they not fit.

With the polynomial well put
But the channel a bit wrong
Where, oh where do we look?

Ditty...

Oh where, Oh where
has my little dog gone?
Oh where, oh where can he be

With his ears cut short
And his tail cut long
Oh where, oh where can he be?

Oh where, Oh where
have my packets gone.. wrong?
Oh where, oh where do they not fit.

With the polynomial well put
But the channel a bit wrong
Where, oh where do we look?

Ditty...

Oh where, Oh where
has my little dog gone?
Oh where, oh where can he be

With his ears cut short

And his tail cut long
Oh where, oh where can he be?

Oh where, Oh where
have my packets gone.. wrong?
Oh where, oh where do they not fit.

With the polynomial well put
But the channel a bit wrong
Where, oh where do we look?

Ditty...

Oh where, Oh where
has my little dog gone?
Oh where, oh where can he be

With his ears cut short
And his tail cut long

Oh where, oh where can he be?

Oh where, Oh where
have my packets gone.. wrong?
Oh where, oh where do they not fit.

With the polynomial well put
But the channel a bit wrong
Where, oh where do we look?

Ditty...

Oh where, Oh where
has my little dog gone?
Oh where, oh where can he be

With his ears cut short
And his tail cut long
Oh where, oh where can he be?

Oh where, Oh where
have my packets gone.. wrong?
Oh where, oh where do they not fit.

With the polynomial well put
But the channel a bit wrong
Where, oh where do we look?

Ditty...

Oh where, Oh where
has my little dog gone?
Oh where, oh where can he be

With his ears cut short
And his tail cut long
Oh where, oh where can he be?

Oh where, Oh where

have my packets gone.. wrong?
Oh where, oh where do they not fit.

With the polynomial well put
But the channel a bit wrong
Where, oh where do we look?

Ditty...

Oh where, Oh where
has my little dog gone?
Oh where, oh where can he be

With his ears cut short
And his tail cut long
Oh where, oh where can he be?

Oh where, Oh where

have my packets gone.. wrong?
Oh where, oh where do they not fit.

With the polynomial well put
But the channel a bit wrong
Where, oh where do we look?

Ditty...

Oh where, Oh where
has my little dog gone?
Oh where, oh where can he be

With his ears cut short
And his tail cut long
Oh where, oh where can he be?

Oh where, Oh where
have my packets gone..

wrong?
Oh where, oh where do they not fit.

With the polynomial well put
But the channel a bit wrong
Where, oh where do we look?

Ditty...

Oh where, Oh where
has my little dog gone?
Oh where, oh where can he be

With his ears cut short
And his tail cut long
Oh where, oh where can he be?

Oh where, Oh where
have my packets gone.. wrong?

Oh where, oh where do they not fit.

With the polynomial well put
But the channel a bit wrong
Where, oh where do we look?

Ditty...

Oh where, Oh where
has my little dog gone?
Oh where, oh where can he be

With his ears cut short
And his tail cut long
Oh where, oh where can he be?

Oh where, Oh where
have my packets gone.. wrong?
Oh where, oh where do they not fit.

With the polynomial well put
But the channel a bit wrong
Where, oh where do we look?

Ditty...

Oh where, Oh where
has my little dog gone?
Oh where, oh where can he be

With his ears cut short
And his tail cut long
Oh where, oh where can he be?

Oh where, Oh where
have my packets gone.. wrong?
Oh where, oh where do they not fit.

With the polynomial well put

But the channel a bit wrong
Where, oh where do we look?

Ditty...

Oh where, Oh where
has my little dog gone?
Oh where, oh where can he be

With his ears cut short
And his tail cut long
Oh where, oh where can he be?

Oh where, Oh where
have my packets gone.. wrong?
Oh where, oh where do they not fit.

With the polynomial well put
But the channel a bit wrong

Where, oh where do we look?

Ditty...

Oh where, Oh where
has my little dog gone?
Oh where, oh where can he be

With his ears cut short
And his tail cut long
Oh where, oh where can he be?

Oh where, Oh where
have my packets gone.. wrong?
Oh where, oh where do they not fit.

With the polynomial well put
But the channel a bit wrong
Where, oh where do we look?

Where oh where can my bad packets be?

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

0×E(2)

(pn−12n−1 + · · ·p0) ≡ R(2)

E(2)

(mod p)

...

E(m)

(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)

E(m)

(mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

0×E(2)

(pn−12n−1 + · · ·p0) ≡ R(2)

E(2)

(mod p)

...

E(m)

(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)

E(m)

(mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

0×E(2)

(pn−12n−1 + · · ·p0) ≡ R(2)

E(2)

(mod p)

...

E(m)

(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)

E(m)

(mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).

Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

0×E(2)

(pn−12n−1 + · · ·p0) ≡ R(2)

E(2)

(mod p)

...

E(m)

(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)

E(m)

(mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!!

My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

0×E(2)

(pn−12n−1 + · · ·p0) ≡ R(2)

E(2)

(mod p)

...

E(m)

(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)

E(m)

(mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.

All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

0×

E(2)

(pn−12n−1 + · · ·p0) ≡ R(2)

E(2)

(mod p)

...

E(m)

(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)

E(m)

(mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

0×E(2)

(pn−12n−1 + · · ·p0) ≡ R(2)

E(2)

(mod p)

...

E(m)

(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)

E(m)

(mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0?

Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

0×E(2)

(pn−12n−1 + · · ·p0) ≡ R(2)

E(2)

(mod p)

...

E(m)

(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)

E(m)

(mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...

??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

0×E(2)

(pn−12n−1 + · · ·p0) ≡ R(2)

E(2)

(mod p)

...

E(m)

(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)

E(m)

(mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

0×E(2)

(pn−12n−1 + · · ·p0) ≡ R(2)

E(2)

(mod p)

...

E(m)

(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)

E(m)

(mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!!

That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

0×E(2)

(pn−12n−1 + · · ·p0) ≡ R(2)

E(2)

(mod p)

...

E(m)

(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)

E(m)

(mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know.

But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

0×E(2)

(pn−12n−1 + · · ·p0) ≡ R(2)

E(2)

(mod p)

...

E(m)

(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)

E(m)

(mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

0×E(2)

(pn−12n−1 + · · ·p0) ≡ R(2)

E(2)

(mod p)

...

E(m)

(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)

E(m)

(mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

0×E(2)

(pn−12n−1 + · · ·p0) ≡ R(2)

E(2)

(mod p)

...

E(m)

(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)

E(m)

(mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)

(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

0×E(2)

(pn−12n−1 + · · ·p0) ≡ R(2)

E(2)

(mod p)

...

E(m)

(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)

E(m)

(mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2)

. . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

0×E(2)

(pn−12n−1 + · · ·p0) ≡ R(2)

E(2)

(mod p)

...

E(m)

(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)

E(m)

(mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .

(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

0×E(2)

(pn−12n−1 + · · ·p0) ≡ R(2)

E(2)

(mod p)

...

E(m)

(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)

E(m)

(mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

0×E(2)

(pn−12n−1 + · · ·p0) ≡ R(2)

E(2)

(mod p)

...

E(m)

(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)

E(m)

(mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?
E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

0×

E(2)(pn−12n−1 + · · ·p0) ≡ R(2)E(2) (mod p)

...
E(m)(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)E(m) (mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·).

(Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?
E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

0×

E(2)(pn−12n−1 + · · ·p0) ≡ R(2)E(2) (mod p)

...
E(m)(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)E(m) (mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Where oh where can my bad packets be?
E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

0×

E(2)(pn−12n−1 + · · ·p0) ≡ R(2)E(2) (mod p)

...
E(m)(pn−1(m)n−1 + · · ·p0) ≡ R(n + 2k)E(m) (mod p)

Idea: Multiply equation i by 0 if and only if P(i) 6= R(i).
Zero times anything is zero!!!!! My love is won.
All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don’t know. But can find!

Errors at points e1, . . . ,ek . (In diagram above, e1 = 2.)

Error locator polynomial: E(x) = (x−e1)(x−e2) . . .(x−ek).

E(i) = 0 if and only if ej = i for some j

Multiply equations by E(·). (Above E(x) = (x-2).)

All equations satisfied!!

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

Plugin points...

(1−2)

(p2 + p1 + p0) ≡ (3)

(1−2)

(mod 7)

(2−2)

(4p2 + 2p1 + p0) ≡ (1)

(2−2)

(mod 7)

(3−2)

(2p2 + 3p1 + p0) ≡ (6)

(3−2)

(mod 7)

(4−2)

(2p2 + 4p1 + p0) ≡ (0)

(4−2)

(mod 7)

(5−2)

(4p2 + 5p1 + p0) ≡ (3)

(5−2)

(mod 7)

(1−e)(p2 + p1 + p0) ≡ (3)(1−e) (mod 7)

(2−e)(4p2 + 2p1 + p0) ≡ (1)(2−e) (mod 7)

(3−e)(2p2 + 3p1 + p0) ≡ (3)(3−e) (mod 7)

(4−e)(2p2 + 4p1 + p0) ≡ (0)(4−e) (mod 7)

(5−e)(4p2 + 5p1 + p0) ≡ (3)(5−e) (mod 7)

Error locator polynomial: (x−2).

Multiply equation i by (i−2). All equations satisfied!

But don’t know error locator polynomial! Do know form: (x−e).

4 unknowns (p0,p1,p2 and e), 5 nonlinear equations.

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

Plugin points...

(1−2)

(p2 + p1 + p0) ≡ (3)

(1−2)

(mod 7)

(2−2)

(4p2 + 2p1 + p0) ≡ (1)

(2−2)

(mod 7)

(3−2)

(2p2 + 3p1 + p0) ≡ (6)

(3−2)

(mod 7)

(4−2)

(2p2 + 4p1 + p0) ≡ (0)

(4−2)

(mod 7)

(5−2)

(4p2 + 5p1 + p0) ≡ (3)

(5−2)

(mod 7)

(1−e)(p2 + p1 + p0) ≡ (3)(1−e) (mod 7)

(2−e)(4p2 + 2p1 + p0) ≡ (1)(2−e) (mod 7)

(3−e)(2p2 + 3p1 + p0) ≡ (3)(3−e) (mod 7)

(4−e)(2p2 + 4p1 + p0) ≡ (0)(4−e) (mod 7)

(5−e)(4p2 + 5p1 + p0) ≡ (3)(5−e) (mod 7)

Error locator polynomial: (x−2).

Multiply equation i by (i−2). All equations satisfied!

But don’t know error locator polynomial! Do know form: (x−e).

4 unknowns (p0,p1,p2 and e), 5 nonlinear equations.

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

Plugin points...

(1−2)

(p2 + p1 + p0) ≡ (3)

(1−2)

(mod 7)

(2−2)

(4p2 + 2p1 + p0) ≡ (1)

(2−2)

(mod 7)

(3−2)

(2p2 + 3p1 + p0) ≡ (6)

(3−2)

(mod 7)

(4−2)

(2p2 + 4p1 + p0) ≡ (0)

(4−2)

(mod 7)

(5−2)

(4p2 + 5p1 + p0) ≡ (3)

(5−2)

(mod 7)

(1−e)(p2 + p1 + p0) ≡ (3)(1−e) (mod 7)

(2−e)(4p2 + 2p1 + p0) ≡ (1)(2−e) (mod 7)

(3−e)(2p2 + 3p1 + p0) ≡ (3)(3−e) (mod 7)

(4−e)(2p2 + 4p1 + p0) ≡ (0)(4−e) (mod 7)

(5−e)(4p2 + 5p1 + p0) ≡ (3)(5−e) (mod 7)

Error locator polynomial: (x−2).

Multiply equation i by (i−2). All equations satisfied!

But don’t know error locator polynomial! Do know form: (x−e).

4 unknowns (p0,p1,p2 and e), 5 nonlinear equations.

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

Plugin points...

(1−2)

(p2 + p1 + p0) ≡ (3)

(1−2)

(mod 7)

(2−2)

(4p2 + 2p1 + p0) ≡ (1)

(2−2)

(mod 7)

(3−2)

(2p2 + 3p1 + p0) ≡ (6)

(3−2)

(mod 7)

(4−2)

(2p2 + 4p1 + p0) ≡ (0)

(4−2)

(mod 7)

(5−2)

(4p2 + 5p1 + p0) ≡ (3)

(5−2)

(mod 7)

(1−e)(p2 + p1 + p0) ≡ (3)(1−e) (mod 7)

(2−e)(4p2 + 2p1 + p0) ≡ (1)(2−e) (mod 7)

(3−e)(2p2 + 3p1 + p0) ≡ (3)(3−e) (mod 7)

(4−e)(2p2 + 4p1 + p0) ≡ (0)(4−e) (mod 7)

(5−e)(4p2 + 5p1 + p0) ≡ (3)(5−e) (mod 7)

Error locator polynomial: (x−2).

Multiply equation i by (i−2). All equations satisfied!

But don’t know error locator polynomial! Do know form: (x−e).

4 unknowns (p0,p1,p2 and e), 5 nonlinear equations.

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

Plugin points...
(1−2)(p2 + p1 + p0) ≡ (3)(1−2) (mod 7)

(2−2)(4p2 + 2p1 + p0) ≡ (1)(2−2) (mod 7)

(3−2)(2p2 + 3p1 + p0) ≡ (6)(3−2) (mod 7)

(4−2)(2p2 + 4p1 + p0) ≡ (0)(4−2) (mod 7)

(5−2)(4p2 + 5p1 + p0) ≡ (3)(5−2) (mod 7)

(1−e)(p2 + p1 + p0) ≡ (3)(1−e) (mod 7)

(2−e)(4p2 + 2p1 + p0) ≡ (1)(2−e) (mod 7)

(3−e)(2p2 + 3p1 + p0) ≡ (3)(3−e) (mod 7)

(4−e)(2p2 + 4p1 + p0) ≡ (0)(4−e) (mod 7)

(5−e)(4p2 + 5p1 + p0) ≡ (3)(5−e) (mod 7)

Error locator polynomial: (x−2).

Multiply equation i by (i−2).

All equations satisfied!

But don’t know error locator polynomial! Do know form: (x−e).

4 unknowns (p0,p1,p2 and e), 5 nonlinear equations.

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

Plugin points...
(1−2)(p2 + p1 + p0) ≡ (3)(1−2) (mod 7)

(2−2)(4p2 + 2p1 + p0) ≡ (1)(2−2) (mod 7)

(3−2)(2p2 + 3p1 + p0) ≡ (6)(3−2) (mod 7)

(4−2)(2p2 + 4p1 + p0) ≡ (0)(4−2) (mod 7)

(5−2)(4p2 + 5p1 + p0) ≡ (3)(5−2) (mod 7)

(1−e)(p2 + p1 + p0) ≡ (3)(1−e) (mod 7)

(2−e)(4p2 + 2p1 + p0) ≡ (1)(2−e) (mod 7)

(3−e)(2p2 + 3p1 + p0) ≡ (3)(3−e) (mod 7)

(4−e)(2p2 + 4p1 + p0) ≡ (0)(4−e) (mod 7)

(5−e)(4p2 + 5p1 + p0) ≡ (3)(5−e) (mod 7)

Error locator polynomial: (x−2).

Multiply equation i by (i−2). All equations satisfied!

But don’t know error locator polynomial! Do know form: (x−e).

4 unknowns (p0,p1,p2 and e), 5 nonlinear equations.

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

Plugin points...
(1−2)(p2 + p1 + p0) ≡ (3)(1−2) (mod 7)

(2−2)(4p2 + 2p1 + p0) ≡ (1)(2−2) (mod 7)

(3−2)(2p2 + 3p1 + p0) ≡ (6)(3−2) (mod 7)

(4−2)(2p2 + 4p1 + p0) ≡ (0)(4−2) (mod 7)

(5−2)(4p2 + 5p1 + p0) ≡ (3)(5−2) (mod 7)

(1−e)(p2 + p1 + p0) ≡ (3)(1−e) (mod 7)

(2−e)(4p2 + 2p1 + p0) ≡ (1)(2−e) (mod 7)

(3−e)(2p2 + 3p1 + p0) ≡ (3)(3−e) (mod 7)

(4−e)(2p2 + 4p1 + p0) ≡ (0)(4−e) (mod 7)

(5−e)(4p2 + 5p1 + p0) ≡ (3)(5−e) (mod 7)

Error locator polynomial: (x−2).

Multiply equation i by (i−2). All equations satisfied!

But don’t know error locator polynomial!

Do know form: (x−e).

4 unknowns (p0,p1,p2 and e), 5 nonlinear equations.

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

Plugin points...
(1−2)(p2 + p1 + p0) ≡ (3)(1−2) (mod 7)

(2−2)(4p2 + 2p1 + p0) ≡ (1)(2−2) (mod 7)

(3−2)(2p2 + 3p1 + p0) ≡ (6)(3−2) (mod 7)

(4−2)(2p2 + 4p1 + p0) ≡ (0)(4−2) (mod 7)

(5−2)(4p2 + 5p1 + p0) ≡ (3)(5−2) (mod 7)

(1−e)(p2 + p1 + p0) ≡ (3)(1−e) (mod 7)

(2−e)(4p2 + 2p1 + p0) ≡ (1)(2−e) (mod 7)

(3−e)(2p2 + 3p1 + p0) ≡ (3)(3−e) (mod 7)

(4−e)(2p2 + 4p1 + p0) ≡ (0)(4−e) (mod 7)

(5−e)(4p2 + 5p1 + p0) ≡ (3)(5−e) (mod 7)

Error locator polynomial: (x−2).

Multiply equation i by (i−2). All equations satisfied!

But don’t know error locator polynomial! Do know form:

(x−e).

4 unknowns (p0,p1,p2 and e), 5 nonlinear equations.

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

Plugin points...
(1−2)(p2 + p1 + p0) ≡ (3)(1−2) (mod 7)

(2−2)(4p2 + 2p1 + p0) ≡ (1)(2−2) (mod 7)

(3−2)(2p2 + 3p1 + p0) ≡ (6)(3−2) (mod 7)

(4−2)(2p2 + 4p1 + p0) ≡ (0)(4−2) (mod 7)

(5−2)(4p2 + 5p1 + p0) ≡ (3)(5−2) (mod 7)

(1−e)(p2 + p1 + p0) ≡ (3)(1−e) (mod 7)

(2−e)(4p2 + 2p1 + p0) ≡ (1)(2−e) (mod 7)

(3−e)(2p2 + 3p1 + p0) ≡ (3)(3−e) (mod 7)

(4−e)(2p2 + 4p1 + p0) ≡ (0)(4−e) (mod 7)

(5−e)(4p2 + 5p1 + p0) ≡ (3)(5−e) (mod 7)

Error locator polynomial: (x−2).

Multiply equation i by (i−2). All equations satisfied!

But don’t know error locator polynomial! Do know form: (x−e).

4 unknowns (p0,p1,p2 and e), 5 nonlinear equations.

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

Plugin points...

(1−2)(p2 + p1 + p0) ≡ (3)(1−2) (mod 7)

(2−2)(4p2 + 2p1 + p0) ≡ (1)(2−2) (mod 7)

(3−2)(2p2 + 3p1 + p0) ≡ (6)(3−2) (mod 7)

(4−2)(2p2 + 4p1 + p0) ≡ (0)(4−2) (mod 7)

(5−2)(4p2 + 5p1 + p0) ≡ (3)(5−2) (mod 7)

(1−e)(p2 + p1 + p0) ≡ (3)(1−e) (mod 7)

(2−e)(4p2 + 2p1 + p0) ≡ (1)(2−e) (mod 7)

(3−e)(2p2 + 3p1 + p0) ≡ (3)(3−e) (mod 7)

(4−e)(2p2 + 4p1 + p0) ≡ (0)(4−e) (mod 7)

(5−e)(4p2 + 5p1 + p0) ≡ (3)(5−e) (mod 7)

Error locator polynomial: (x−2).

Multiply equation i by (i−2). All equations satisfied!

But don’t know error locator polynomial! Do know form: (x−e).

4 unknowns (p0,p1,p2 and e), 5 nonlinear equations.

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

Plugin points...

(1−2)(p2 + p1 + p0) ≡ (3)(1−2) (mod 7)

(2−2)(4p2 + 2p1 + p0) ≡ (1)(2−2) (mod 7)

(3−2)(2p2 + 3p1 + p0) ≡ (6)(3−2) (mod 7)

(4−2)(2p2 + 4p1 + p0) ≡ (0)(4−2) (mod 7)

(5−2)(4p2 + 5p1 + p0) ≡ (3)(5−2) (mod 7)

(1−e)(p2 + p1 + p0) ≡ (3)(1−e) (mod 7)

(2−e)(4p2 + 2p1 + p0) ≡ (1)(2−e) (mod 7)

(3−e)(2p2 + 3p1 + p0) ≡ (3)(3−e) (mod 7)

(4−e)(2p2 + 4p1 + p0) ≡ (0)(4−e) (mod 7)

(5−e)(4p2 + 5p1 + p0) ≡ (3)(5−e) (mod 7)

Error locator polynomial: (x−2).

Multiply equation i by (i−2). All equations satisfied!

But don’t know error locator polynomial! Do know form: (x−e).

4 unknowns (p0,p1,p2 and e),

5 nonlinear equations.

Example.

Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Find P(x) = p2x2 + p1x + p0 that contains n + k = 3 + 1 points.

Plugin points...

(1−2)(p2 + p1 + p0) ≡ (3)(1−2) (mod 7)

(2−2)(4p2 + 2p1 + p0) ≡ (1)(2−2) (mod 7)

(3−2)(2p2 + 3p1 + p0) ≡ (6)(3−2) (mod 7)

(4−2)(2p2 + 4p1 + p0) ≡ (0)(4−2) (mod 7)

(5−2)(4p2 + 5p1 + p0) ≡ (3)(5−2) (mod 7)

(1−e)(p2 + p1 + p0) ≡ (3)(1−e) (mod 7)

(2−e)(4p2 + 2p1 + p0) ≡ (1)(2−e) (mod 7)

(3−e)(2p2 + 3p1 + p0) ≡ (3)(3−e) (mod 7)

(4−e)(2p2 + 4p1 + p0) ≡ (0)(4−e) (mod 7)

(5−e)(4p2 + 5p1 + p0) ≡ (3)(5−e) (mod 7)

Error locator polynomial: (x−2).

Multiply equation i by (i−2). All equations satisfied!

But don’t know error locator polynomial! Do know form: (x−e).

4 unknowns (p0,p1,p2 and e), 5 nonlinear equations.

..turn their heads each day,

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)

...

E(i)

(pn−1in−1 + · · ·p0) ≡ R(i)

E(i)

(mod p)

...

E(m)

(pn−1(n + 2k)n−1 + · · ·p0) ≡ R(m)

E(m)

(mod p)

...so satisfied, I’m on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear!

Let Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of E(x)!

..turn their heads each day,

E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n + 2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear!

Let Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of E(x)!

..turn their heads each day,

E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n + 2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n + 2k satisfied equations,

n + k unknowns. But nonlinear!

Let Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of E(x)!

..turn their heads each day,

E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n + 2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n + 2k satisfied equations, n + k unknowns.

But nonlinear!

Let Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of E(x)!

..turn their heads each day,

E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n + 2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear!

Let Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of E(x)!

..turn their heads each day,

E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n + 2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear!

Let Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of E(x)!

..turn their heads each day,

E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n + 2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear!

Let Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of E(x)!

..turn their heads each day,

E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n + 2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear!

Let Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of E(x)!

..turn their heads each day,

E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n + 2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear!

Let Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of E(x)!

..turn their heads each day,

E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n + 2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear!

Let Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of E(x)!

Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk + bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n + k −1 ...

Q(x) = an+k−1xn+k−1 + an+k−2xn+k−2 + · · ·a0

=⇒ n + k (unknown) coefficients.

Number of unknown coefficients: n + 2k .

Finding Q(x) and E(x)?

I E(x) has degree k

...

E(x) = xk + bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n + k −1 ...

Q(x) = an+k−1xn+k−1 + an+k−2xn+k−2 + · · ·a0

=⇒ n + k (unknown) coefficients.

Number of unknown coefficients: n + 2k .

Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk + bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n + k −1 ...

Q(x) = an+k−1xn+k−1 + an+k−2xn+k−2 + · · ·a0

=⇒ n + k (unknown) coefficients.

Number of unknown coefficients: n + 2k .

Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk + bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients.

Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n + k −1 ...

Q(x) = an+k−1xn+k−1 + an+k−2xn+k−2 + · · ·a0

=⇒ n + k (unknown) coefficients.

Number of unknown coefficients: n + 2k .

Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk + bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n + k −1 ...

Q(x) = an+k−1xn+k−1 + an+k−2xn+k−2 + · · ·a0

=⇒ n + k (unknown) coefficients.

Number of unknown coefficients: n + 2k .

Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk + bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n + k −1

...

Q(x) = an+k−1xn+k−1 + an+k−2xn+k−2 + · · ·a0

=⇒ n + k (unknown) coefficients.

Number of unknown coefficients: n + 2k .

Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk + bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n + k −1 ...

Q(x) = an+k−1xn+k−1 + an+k−2xn+k−2 + · · ·a0

=⇒ n + k (unknown) coefficients.

Number of unknown coefficients: n + 2k .

Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk + bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n + k −1 ...

Q(x) = an+k−1xn+k−1 + an+k−2xn+k−2 + · · ·a0

=⇒ n + k (unknown) coefficients.

Number of unknown coefficients: n + 2k .

Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk + bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n + k −1 ...

Q(x) = an+k−1xn+k−1 + an+k−2xn+k−2 + · · ·a0

=⇒ n + k (unknown) coefficients.

Number of unknown coefficients:

n + 2k .

Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk + bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n + k −1 ...

Q(x) = an+k−1xn+k−1 + an+k−2xn+k−2 + · · ·a0

=⇒ n + k (unknown) coefficients.

Number of unknown coefficients: n + 2k .

Solving for Q(x) and E(x)...

and P(x)

For all points 1, . . . , i ,n + 2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n + 2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1 + bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k + bk−1(2)k−1 · · ·b0) (mod p)

...
an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k + bk−1(m)k−1 · · ·b0) (mod p)

..and n + 2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...

and P(x)

For all points 1, . . . , i ,n + 2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n + 2k linear equations.

an+k−1 + . . .a0 ≡ R(1)(1 + bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k + bk−1(2)k−1 · · ·b0) (mod p)

...
an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k + bk−1(m)k−1 · · ·b0) (mod p)

..and n + 2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...

and P(x)

For all points 1, . . . , i ,n + 2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n + 2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1 + bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k + bk−1(2)k−1 · · ·b0) (mod p)

...
an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k + bk−1(m)k−1 · · ·b0) (mod p)

..and n + 2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...

and P(x)

For all points 1, . . . , i ,n + 2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n + 2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1 + bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k + bk−1(2)k−1 · · ·b0) (mod p)

...

an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k + bk−1(m)k−1 · · ·b0) (mod p)

..and n + 2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...

and P(x)

For all points 1, . . . , i ,n + 2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n + 2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1 + bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k + bk−1(2)k−1 · · ·b0) (mod p)

...
an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k + bk−1(m)k−1 · · ·b0) (mod p)

..and n + 2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...

and P(x)

For all points 1, . . . , i ,n + 2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n + 2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1 + bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k + bk−1(2)k−1 · · ·b0) (mod p)

...
an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k + bk−1(m)k−1 · · ·b0) (mod p)

..and n + 2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...

and P(x)

For all points 1, . . . , i ,n + 2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n + 2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1 + bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k + bk−1(2)k−1 · · ·b0) (mod p)

...
an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k + bk−1(m)k−1 · · ·b0) (mod p)

..and n + 2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...and P(x)

For all points 1, . . . , i ,n + 2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n + 2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1 + bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k + bk−1(2)k−1 · · ·b0) (mod p)

...
an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k + bk−1(m)k−1 · · ·b0) (mod p)

..and n + 2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...and P(x)

For all points 1, . . . , i ,n + 2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n + 2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1 + bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k + bk−1(2)k−1 · · ·b0) (mod p)

...
an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k + bk−1(m)k−1 · · ·b0) (mod p)

..and n + 2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...and P(x)

For all points 1, . . . , i ,n + 2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n + 2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1 + bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k + bk−1(2)k−1 · · ·b0) (mod p)

...
an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k + bk−1(m)k−1 · · ·b0) (mod p)

..and n + 2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...and P(x)

For all points 1, . . . , i ,n + 2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n + 2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1 + bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k + bk−1(2)k−1 · · ·b0) (mod p)

...
an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k + bk−1(m)k−1 · · ·b0) (mod p)

..and n + 2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 + a2x2 + a1x + a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 + a2 + a1 + a0 ≡ 3(1−b0) (mod 7)

a3 + 4a2 + 2a1 + a0 ≡ 1(2−b0) (mod 7)

6a3 + 2a2 + 3a1 + a0 ≡ 6(3−b0) (mod 7)

a3 + 2a2 + 4a1 + a0 ≡ 0(4−b0) (mod 7)

6a3 + 4a2 + 5a1 + a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 + 6x2 + 6x + 5.

E(x) = x−2.

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 + a2x2 + a1x + a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 + a2 + a1 + a0 ≡ 3(1−b0) (mod 7)

a3 + 4a2 + 2a1 + a0 ≡ 1(2−b0) (mod 7)

6a3 + 2a2 + 3a1 + a0 ≡ 6(3−b0) (mod 7)

a3 + 2a2 + 4a1 + a0 ≡ 0(4−b0) (mod 7)

6a3 + 4a2 + 5a1 + a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 + 6x2 + 6x + 5.

E(x) = x−2.

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 + a2x2 + a1x + a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 + a2 + a1 + a0 ≡ 3(1−b0) (mod 7)

a3 + 4a2 + 2a1 + a0 ≡ 1(2−b0) (mod 7)

6a3 + 2a2 + 3a1 + a0 ≡ 6(3−b0) (mod 7)

a3 + 2a2 + 4a1 + a0 ≡ 0(4−b0) (mod 7)

6a3 + 4a2 + 5a1 + a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 + 6x2 + 6x + 5.

E(x) = x−2.

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 + a2x2 + a1x + a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 + a2 + a1 + a0 ≡ 3(1−b0) (mod 7)

a3 + 4a2 + 2a1 + a0 ≡ 1(2−b0) (mod 7)

6a3 + 2a2 + 3a1 + a0 ≡ 6(3−b0) (mod 7)

a3 + 2a2 + 4a1 + a0 ≡ 0(4−b0) (mod 7)

6a3 + 4a2 + 5a1 + a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 + 6x2 + 6x + 5.

E(x) = x−2.

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 + a2x2 + a1x + a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 + a2 + a1 + a0 ≡ 3(1−b0) (mod 7)

a3 + 4a2 + 2a1 + a0 ≡ 1(2−b0) (mod 7)

6a3 + 2a2 + 3a1 + a0 ≡ 6(3−b0) (mod 7)

a3 + 2a2 + 4a1 + a0 ≡ 0(4−b0) (mod 7)

6a3 + 4a2 + 5a1 + a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 + 6x2 + 6x + 5.

E(x) = x−2.

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 + a2x2 + a1x + a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 + a2 + a1 + a0 ≡ 3(1−b0) (mod 7)

a3 + 4a2 + 2a1 + a0 ≡ 1(2−b0) (mod 7)

6a3 + 2a2 + 3a1 + a0 ≡ 6(3−b0) (mod 7)

a3 + 2a2 + 4a1 + a0 ≡ 0(4−b0) (mod 7)

6a3 + 4a2 + 5a1 + a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 + 6x2 + 6x + 5.

E(x) = x−2.

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 + a2x2 + a1x + a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 + a2 + a1 + a0 ≡ 3(1−b0) (mod 7)

a3 + 4a2 + 2a1 + a0 ≡ 1(2−b0) (mod 7)

6a3 + 2a2 + 3a1 + a0 ≡ 6(3−b0) (mod 7)

a3 + 2a2 + 4a1 + a0 ≡ 0(4−b0) (mod 7)

6a3 + 4a2 + 5a1 + a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 + 6x2 + 6x + 5.

E(x) = x−2.

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 + a2x2 + a1x + a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 + a2 + a1 + a0 ≡ 3(1−b0) (mod 7)

a3 + 4a2 + 2a1 + a0 ≡ 1(2−b0) (mod 7)

6a3 + 2a2 + 3a1 + a0 ≡ 6(3−b0) (mod 7)

a3 + 2a2 + 4a1 + a0 ≡ 0(4−b0) (mod 7)

6a3 + 4a2 + 5a1 + a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 + 6x2 + 6x + 5.

E(x) = x−2.

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 + a2x2 + a1x + a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 + a2 + a1 + a0 ≡ 3(1−b0) (mod 7)

a3 + 4a2 + 2a1 + a0 ≡ 1(2−b0) (mod 7)

6a3 + 2a2 + 3a1 + a0 ≡ 6(3−b0) (mod 7)

a3 + 2a2 + 4a1 + a0 ≡ 0(4−b0) (mod 7)

6a3 + 4a2 + 5a1 + a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 + 6x2 + 6x + 5.

E(x) = x−2.

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 + a2x2 + a1x + a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 + a2 + a1 + a0 ≡ 3(1−b0) (mod 7)

a3 + 4a2 + 2a1 + a0 ≡ 1(2−b0) (mod 7)

6a3 + 2a2 + 3a1 + a0 ≡ 6(3−b0) (mod 7)

a3 + 2a2 + 4a1 + a0 ≡ 0(4−b0) (mod 7)

6a3 + 4a2 + 5a1 + a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 + 6x2 + 6x + 5.

E(x) = x−2.

Example: finishing up.

Q(x) = x3 + 6x2 + 6x + 5.

E(x) = x−2.

1 xˆ2

+ 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5

xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0
P(x) = x2 + x + 1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.

Q(x) = x3 + 6x2 + 6x + 5.
E(x) = x−2.

1 xˆ2

+ 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5

xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0
P(x) = x2 + x + 1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.

Q(x) = x3 + 6x2 + 6x + 5.
E(x) = x−2.

1 xˆ2

+ 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5

xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0
P(x) = x2 + x + 1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.

Q(x) = x3 + 6x2 + 6x + 5.
E(x) = x−2.

1 xˆ2

+ 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5

xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0
P(x) = x2 + x + 1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.

Q(x) = x3 + 6x2 + 6x + 5.
E(x) = x−2.

1 xˆ2

+ 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5

xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5

1 xˆ2 - 2 x

x + 5
x - 2

0
P(x) = x2 + x + 1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.

Q(x) = x3 + 6x2 + 6x + 5.
E(x) = x−2.

1 xˆ2 + 1 x

+ 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5

xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0
P(x) = x2 + x + 1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.

Q(x) = x3 + 6x2 + 6x + 5.
E(x) = x−2.

1 xˆ2 + 1 x

+ 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5

xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5

x - 2

0
P(x) = x2 + x + 1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.

Q(x) = x3 + 6x2 + 6x + 5.
E(x) = x−2.

1 xˆ2 + 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5
xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0

P(x) = x2 + x + 1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.

Q(x) = x3 + 6x2 + 6x + 5.
E(x) = x−2.

1 xˆ2 + 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5
xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0

P(x) = x2 + x + 1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.

Q(x) = x3 + 6x2 + 6x + 5.
E(x) = x−2.

1 xˆ2 + 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5
xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0
P(x) = x2 + x + 1

Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.

Q(x) = x3 + 6x2 + 6x + 5.
E(x) = x−2.

1 xˆ2 + 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5
xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0
P(x) = x2 + x + 1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.

Q(x) = x3 + 6x2 + 6x + 5.
E(x) = x−2.

1 xˆ2 + 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5
xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0
P(x) = x2 + x + 1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2?

1
Except at x = 2? Hole there?

Example: finishing up.

Q(x) = x3 + 6x2 + 6x + 5.
E(x) = x−2.

1 xˆ2 + 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5
xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0
P(x) = x2 + x + 1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.

Q(x) = x3 + 6x2 + 6x + 5.
E(x) = x−2.

1 xˆ2 + 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5
xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0
P(x) = x2 + x + 1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2?

Hole there?

Example: finishing up.

Q(x) = x3 + 6x2 + 6x + 5.
E(x) = x−2.

1 xˆ2 + 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5
xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0
P(x) = x2 + x + 1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Error Correction: Berlekamp-Welsh

Message: m1, . . . ,mn.
Sender:

1. Form degree n−1 polynomial P(x) where P(i) = mi .

2. Send P(1), . . . ,P(n + 2k).

Receiver:

1. Receive R(1), . . . ,R(n + 2k).

2. Solve n + 2k equations, Q(i) = E(i)R(i) to find Q(x) = E(x)P(x)
and E(x).

3. Compute P(x) = Q(x)/E(x).

4. Compute P(1), . . . ,P(n).

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values? Sure.

Efficiency? Sure. Only n + 2k values.
See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values? Sure.

Efficiency? Sure. Only n + 2k values.
See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor?

Sure.
Check all values? Sure.

Efficiency? Sure. Only n + 2k values.
See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.

Check all values? Sure.

Efficiency? Sure. Only n + 2k values.
See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values?

Sure.

Efficiency? Sure. Only n + 2k values.
See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values? Sure.

Efficiency? Sure. Only n + 2k values.
See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values? Sure.

Efficiency? Sure. Only n + 2k values.
See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values? Sure.

Efficiency?

Sure. Only n + 2k values.
See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values? Sure.

Efficiency? Sure.

Only n + 2k values.
See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values? Sure.

Efficiency? Sure. Only n + 2k values.

See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values? Sure.

Efficiency? Sure. Only n + 2k values.
See where it is 0.

Hmmm...

Is there one and only one P(x) from Berlekamp-Welsh procedure?

Existence: there is a P(x) and E(x) that satisfy equations.

Hmmm...

Is there one and only one P(x) from Berlekamp-Welsh procedure?

Existence: there is a P(x) and E(x) that satisfy equations.

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)

E ′(x)
=

Q(x)

E(x)
= P(x). (1)

Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n + 2k −1
and agree on n + 2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.

=⇒ Q′(x)
E ′(x) = Q(x)

E(x) equal on n points.
Both degree ≤ n−1 =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)

E ′(x)
=

Q(x)

E(x)
= P(x). (1)

Proof:

We claim

Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n + 2k −1
and agree on n + 2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.

=⇒ Q′(x)
E ′(x) = Q(x)

E(x) equal on n points.
Both degree ≤ n−1 =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)

E ′(x)
=

Q(x)

E(x)
= P(x). (1)

Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n + 2k −1
and agree on n + 2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.

=⇒ Q′(x)
E ′(x) = Q(x)

E(x) equal on n points.
Both degree ≤ n−1 =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)

E ′(x)
=

Q(x)

E(x)
= P(x). (1)

Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n + 2k −1
and agree on n + 2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.

=⇒ Q′(x)
E ′(x) = Q(x)

E(x) equal on n points.
Both degree ≤ n−1 =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)

E ′(x)
=

Q(x)

E(x)
= P(x). (1)

Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n + 2k −1
and agree on n + 2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.

=⇒ Q′(x)
E ′(x) = Q(x)

E(x) equal on n points.
Both degree ≤ n−1 =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)

E ′(x)
=

Q(x)

E(x)
= P(x). (1)

Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n + 2k −1

and agree on n + 2k points
E(x) and E ′(x) have at most k zeros each.

Can cross divide at n points.
=⇒ Q′(x)

E ′(x) = Q(x)
E(x) equal on n points.

Both degree ≤ n−1 =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)

E ′(x)
=

Q(x)

E(x)
= P(x). (1)

Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n + 2k −1
and agree on n + 2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.

=⇒ Q′(x)
E ′(x) = Q(x)

E(x) equal on n points.
Both degree ≤ n−1 =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)

E ′(x)
=

Q(x)

E(x)
= P(x). (1)

Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n + 2k −1
and agree on n + 2k points

E(x) and E ′(x) have at most k zeros each.

Can cross divide at n points.
=⇒ Q′(x)

E ′(x) = Q(x)
E(x) equal on n points.

Both degree ≤ n−1 =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)

E ′(x)
=

Q(x)

E(x)
= P(x). (1)

Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n + 2k −1
and agree on n + 2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.

=⇒ Q′(x)
E ′(x) = Q(x)

E(x) equal on n points.
Both degree ≤ n−1 =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)

E ′(x)
=

Q(x)

E(x)
= P(x). (1)

Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n + 2k −1
and agree on n + 2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.

=⇒ Q′(x)
E ′(x) = Q(x)

E(x) equal on n points.

Both degree ≤ n−1 =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)

E ′(x)
=

Q(x)

E(x)
= P(x). (1)

Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n + 2k −1
and agree on n + 2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.

=⇒ Q′(x)
E ′(x) = Q(x)

E(x) equal on n points.
Both degree ≤ n−1

=⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)

E ′(x)
=

Q(x)

E(x)
= P(x). (1)

Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n + 2k −1
and agree on n + 2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.

=⇒ Q′(x)
E ′(x) = Q(x)

E(x) equal on n points.
Both degree ≤ n−1 =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)

E ′(x)
=

Q(x)

E(x)
= P(x). (1)

Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n + 2k −1
and agree on n + 2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.

=⇒ Q′(x)
E ′(x) = Q(x)

E(x) equal on n points.
Both degree ≤ n−1 =⇒ Same polynomial!

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n + 2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x .

Proof:

Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n + 2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n + 2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n + 2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n + 2k}.

If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.
=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n + 2k}.
If E(i) = 0, then Q(i) = 0.

If E ′(i) = 0, then Q′(i) = 0.
=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n + 2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n + 2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n + 2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n + 2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n + 2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n + 2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n + 2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n + 2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n + 2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Yaay!!

Berlekamp-Welsh algorithm decodes correctly when k errors!

Poll
Say you sent a message of length 4, encoded as P(x) where one
sends packets P(1), ...P(8).

You recieve packets R(1), ...R(8).

Packets 1 and 4 are corrupted.

(A) R(1) 6= P(1)
(B) The degree of P(x)E(x) = 3 + 2 = 5.
(C) The degree of E(x) is 2.
(D) The number of coefficients of P(x) is 4.
(E) The number of coefficients of P(x)Q(x) is 6.

(E) is false.

(A) E(x) = (x−1)(x−4)
(B) The number of coefficents in E(x) is 2.
(C) The number of unknown coefficents in E(x) is 2.
(D) E(x) = (x−1)(x−2)
(E) R(4) 6= P(4)
(F) The degree of R(x) is 5.

(A), (C), (E). (F) doesn’t type check!

Poll
Say you sent a message of length 4, encoded as P(x) where one
sends packets P(1), ...P(8).

You recieve packets R(1), ...R(8).

Packets 1 and 4 are corrupted.

(A) R(1) 6= P(1)
(B) The degree of P(x)E(x) = 3 + 2 = 5.
(C) The degree of E(x) is 2.
(D) The number of coefficients of P(x) is 4.
(E) The number of coefficients of P(x)Q(x) is 6.

(E) is false.

(A) E(x) = (x−1)(x−4)
(B) The number of coefficents in E(x) is 2.
(C) The number of unknown coefficents in E(x) is 2.
(D) E(x) = (x−1)(x−2)
(E) R(4) 6= P(4)
(F) The degree of R(x) is 5.

(A), (C), (E). (F) doesn’t type check!

Poll
Say you sent a message of length 4, encoded as P(x) where one
sends packets P(1), ...P(8).

You recieve packets R(1), ...R(8).

Packets 1 and 4 are corrupted.

(A) R(1) 6= P(1)
(B) The degree of P(x)E(x) = 3 + 2 = 5.
(C) The degree of E(x) is 2.
(D) The number of coefficients of P(x) is 4.
(E) The number of coefficients of P(x)Q(x) is 6.

(E) is false.

(A) E(x) = (x−1)(x−4)
(B) The number of coefficents in E(x) is 2.
(C) The number of unknown coefficents in E(x) is 2.
(D) E(x) = (x−1)(x−2)
(E) R(4) 6= P(4)
(F) The degree of R(x) is 5.

(A), (C), (E). (F) doesn’t type check!

Poll
Say you sent a message of length 4, encoded as P(x) where one
sends packets P(1), ...P(8).

You recieve packets R(1), ...R(8).

Packets 1 and 4 are corrupted.

(A) R(1) 6= P(1)
(B) The degree of P(x)E(x) = 3 + 2 = 5.
(C) The degree of E(x) is 2.
(D) The number of coefficients of P(x) is 4.
(E) The number of coefficients of P(x)Q(x) is 6.

(E) is false.

(A) E(x) = (x−1)(x−4)
(B) The number of coefficents in E(x) is 2.
(C) The number of unknown coefficents in E(x) is 2.
(D) E(x) = (x−1)(x−2)
(E) R(4) 6= P(4)
(F) The degree of R(x) is 5.

(A), (C), (E). (F) doesn’t type check!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets?

n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k

How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode?

With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).

Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree?

n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1

Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover?

Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets?

n + 2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k

Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?

k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?

k changes to make diff. messages overlap
How to encode?

With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x).

Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree?

n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.

Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?

Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?

Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x).

Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.

Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division!

P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes.

Welsh-Berlekamp Decoding. Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding.

Perfection!

Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? n + k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n + 2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Cool.

Really Cool!

